

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 10: Multiple Regression

Simple linear regression

slope: vocabulary size
increase by 10,000,
reading score increases
by 2 points on average.

intercept: the expected y
when x=0, may or may
not make sense

R²

Multiple regression

Example: Alice dataset

Participants listened to the first chapter of *Alice in Wonderland* in the fMRI scanner.

Question: How is the brain activity in RATL, LPTL and LIFG affect the brain activity in LATL?

Plot data first

All three brain regions seem to have a linear relationship with LATL

One-variable model

LATL~RATL

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 6.115e-124.828e-020.0001RATL3.980e-014.835e-028.2323.42e-15

Residual standard error: 0.9186 on 360 degrees of freedom Multiple R-squared: 0.1584, Adjusted R-squared: 0.1561 F-statistic: 67.77 on 1 and 360 DF, p-value: 3.419e-15

LATL~LIFG

Coefficients:

	Estimate	Std. E	rror t	value	Pr(>ltl)	
(Intercept)	1.295e-11	5.000	e-02	0.000	1	
LIFG	3.122e-01	5.007	e-02	6.234	1.27e-09	***

Residual standard error: 0.9513 on 360 degrees of freedom Multiple R-squared: 0.09745, Adjusted R-squared: 0.09494 F-statistic: 38.87 on 1 and 360 DF, p-value: 1.27e-09

LATL~LPTL

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 1.381e-114.582e-020.001LPTL4.921e-014.588e-0210.72<2e-16 ***</td>

Residual standard error: 0.8718 on 360 degrees of freedom Multiple R-squared: 0.2421, Adjusted R-squared: 0.24 F-statistic: 115 on 1 and 360 DF, p-value: < 2.2e-16

Correlation among independent variables?

RATL correlated with LIFG

Correlation matrix

p < 2.2e-16

Multicollinearity:

Two or more independent variables are correlated

 \rightarrow We cannot be sure which variable explains the variance in the dependent variable

Two-variable model

LATL~RATL + LPTL

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept)7.487e-124.261e-020.0001RATL3.271e-014.324e-027.5643.3e-13***LPTL4.392e-014.324e-0210.158< 2e-16</td>***

Residual standard error: 0.8108 on 359 degrees of freedom Multiple R-squared: 0.3463, Adjusted R-squared: 0.3427 F-statistic: 95.09 on 2 and 359 DF, p-value: < 2.2e-16

LATL~LPTL + LIFG

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.307e-11 4.368e-02 0.000 1 LPTL 4.665e-01 4.395e-02 10.615 < 2e-16 *** LIFG 2.676e-01 4.395e-02 6.089 2.93e-09 ***

Residual standard error: 0.8311 on 359 degrees of freedom Multiple R-squared: 0.313, Adjusted R-squared: 0.3092 F-statistic: 81.8 on 2 and 359 DF, p-value: < 2.2e-16

LATL~ RATL + LIFG

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	6.988e-12	4.823e-02	0.000	1.000	
RATL	3.405e-01	6.437e-02	5.289	2.14e-07	***
LIFG	8.706e-02	6.437e-02	1.353	0.177	

Residual standard error: 0.9176 on 359 degrees of freedom Multiple R-squared: 0.1627, Adjusted R-squared: 0.158 F-statistic: 34.88 on 2 and 359 DF, p-value: 1.438e-14

The full model

LATL~RATL + LPTL + LIFG

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	8.451e-12	4.250e-02	0.000	1.0000	
RATL	2.636e-01	5.723e-02	4.605	5.73e-06	***
LPTL	4.403e-01	4.313e-02	10.208	< 2e-16	***
LIFG	9.581e-02	5.674e-02	1.689	0.0921	

Residual standard error: 0.8087 on 358 degrees of freedom Multiple R-squared: 0.3515, Adjusted R-squared: 0.346 F-statistic: 64.67 on 3 and 358 DF, p-value: < 2.2e-16

Model comparison

Model	F	p	R ²	R ² adjusted	VIF
RATL	67.77	3.419e-15	0.158	0.156	1
LPTL	115	< 2.2e-16	0.242	0.24	1
LIFG	38.87	1.27e-09	0.097	0.095	1
RATL+LPTL	95.09	< 2.2e-16	0.346	0.343	1.03
RATL+LIFG	34.88	1.438e-14	0.163	0.158	1.78
LPTL+LIFG	81.8	< 2.2e-16	0.313	0.309	1.01
RATL+LPTL+LIFG	64.67	< 2.2e-16	0.352	0.346	1.81,1.03,1.78

Adjusted R²

Adjusted R² is a corrected goodness-of-fit measure for linear models.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

R² does not decrease when the number of variables increases; Additional variable usually will account for some variance, if not 0.

\rightarrow need a standardized R²:

$$R^2 adjusted = 1 - \frac{R^2(n-1)}{n-k-1}$$

n: number of observationsk: number of model parameters

 \rightarrow As the number of parameters increases, adjusted R² decreases if R² does not increase significantly

Variance Inflation Factor (VIF)

VIF provides a measure of multicollinearity among the independent variables in a multiple regression model.

 $VIF_i = \frac{1}{1-R_i^2}$ Regressing the i_{th} variable on the other variables: How much variance in the i_{th} variable can be explained by other variables

 $y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$

 $\mathbf{x1} = \beta_0 + \beta_1 x_2 + \beta_2 x_3 \rightarrow R_1^2$

VIF < 3 is usually good; VIF > 10 indicates high collinearity.

Best model?

Model	F	р	R ²	R ² adjusted	VIF
RATL	67.77	3.419e-15	0.158	0.156	1
LPTL	115	< 2.2e-16	0.242	0.24	1
LIFG	38.87	1.27e-09	0.097	0.095	1
RATL+LPTL	95.09	< 2.2e-16	0.346	0.343	1.03
RATL+LIFG	34.88	1.438e-14	0.163	0.158	1.78
LPTL+LIFG	81.8	< 2.2e-16	0.313	0.309	1.01
RATL+LPTL+LIFG	64.67	< 2.2e-16	0.352	0.346	1.81,1.03,1.78

Testing whether the more complex model is significantly better at capturing the data than the simpler model.

```
Model 1: LATL ~ RATL + LPTL
Model 2: LATL ~ RATL + LPTL + LIFG
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 359 236
2 358 234 1 1.9 2.9 0.09 .
```