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Simple linear regression & multiple regression
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Model comparison

Model F p R2 R2 adjusted VIF

RATL 67.77 3.419e-15 0.158 0.156 1
LPTL 115 < 2.2e-16 0.242 0.24 1
LIFG 38.87 1.27e-09 0.097 0.095 1

RATL+LPTL 95.09 < 2.2e-16 0.346 0.343 1.03
RATL+LIFG 34.88 1.438e-14 0.163 0.158 1.78
LPTL+LIFG 81.8 < 2.2e-16 0.313 0.309 1.01

RATL+LPTL+LIFG 64.67 < 2.2e-16 0.352 0.346 1.81,1.03,1.78



Logistic regression
When the dependent variable (y) is binary (0 or 1):
e.g., a person’s name is male or female?

a movie review if positive or negative? 
an email is spam or not?

The task of text classification
• Input:
• a document x
• two classes  C = {c1, c2}

• Output: a predicted class !𝑦 Î C



Features in logistic regression
Input vector:  x	=	[x1,	x2,	…,	xn]
[卓, 琳, Cheuk, Lam, LLA]
Probability of these features in female names:
à x	=	[0.5,	0.7,	0.5,	0.6,	0.8]

Weights: one per feature: w	=	[w1,	w2,	…,	wn]
à w	=	[0.1,	0.8,	-0.1,	0.2,	0.7]

Prediction: z =	w・x +	b
z	=	w1*x1+	w2*x2+	w3*x3+	w4*x4+	w5*x5+	b
=	0.05	+	0.56	+	(-0.05)	+	0.12	+	0.56	+	0.3
=	1.54



Transform prediction into probability

𝑧 is a number, but we We’d like a classifier that gives us a probability

Solution: use a function of z that goes from 0 to 1

5.1 • CLASSIFICATION: THE SIGMOID 3

sentiment” versus “negative sentiment”, the features represent counts of words in a
document, P(y = 1|x) is the probability that the document has positive sentiment,
and P(y = 0|x) is the probability that the document has negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature
is to the classification decision, and can be positive (providing evidence that the in-
stance being classified belongs in the positive class) or negative (providing evidence
that the instance being classified belongs in the negative class). Thus we might
expect in a sentiment task the word awesome to have a high positive weight, and
abysmal to have a very negative weight. The bias term, also called the intercept, isbias term

intercept another real number that’s added to the weighted inputs.
To make a decision on a test instance— after we’ve learned the weights in

training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

It is nearly linear around 0 but outlier values get squashed toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z =
1

1+ exp(�z)
(5.4)

(For the rest of the book, we’ll use the notation exp(x) to mean ex.) The sigmoid
has a number of advantages; it takes a real-valued number and maps it into the range

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

à the sigmoid function



The sigmoid function

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

5.1 • CLASSIFICATION: THE SIGMOID 3

is “positive sentiment” versus “negative sentiment”, the features represent counts
of words in a document, and P(y = 1|x) is the probability that the document has
positive sentiment, while and P(y = 0|x) is the probability that the document has
negative sentiment.

Logistic regression solves this task by learning, from a training set, a vector of
weights and a bias term. Each weight wi is a real number, and is associated with one
of the input features xi. The weight wi represents how important that input feature is
to the classification decision, and can be positive (meaning the feature is associated
with the class) or negative (meaning the feature is not associated with the class).
Thus we might expect in a sentiment task the word awesome to have a high positive
weight, and abysmal to have a very negative weight. The bias term, also called thebias term
intercept, is another real number that’s added to the weighted inputs.intercept

To make a decision on a test instance— after we’ve learned the weights in
training— the classifier first multiplies each xi by its weight wi, sums up the weighted
features, and adds the bias term b. The resulting single number z expresses the
weighted sum of the evidence for the class.

z =

 nX

i=1

wixi

!
+b (5.2)

In the rest of the book we’ll represent such sums using the dot product notation fromdot product

linear algebra. The dot product of two vectors a and b, written as a ·b is the sum of
the products of the corresponding elements of each vector. Thus the following is an
equivalent formation to Eq. 5.2:

z = w · x+b (5.3)

But note that nothing in Eq. 5.3 forces z to be a legal probability, that is, to lie
between 0 and 1. In fact, since weights are real-valued, the output might even be
negative; z ranges from �• to •.

Figure 5.1 The sigmoid function y= 1
1+e�z takes a real value and maps it to the range [0,1].

Because it is nearly linear around 0 but has a sharp slope toward the ends, it tends to squash
outlier values toward 0 or 1.

To create a probability, we’ll pass z through the sigmoid function, s(z). Thesigmoid

sigmoid function (named because it looks like an s) is also called the logistic func-
tion, and gives logistic regression its name. The sigmoid has the following equation,logistic

function
shown graphically in Fig. 5.1:

y = s(z) =
1

1+ e�z (5.4)

4 CHAPTER 5 • LOGISTIC REGRESSION

The sigmoid has a number of advantages; it take a real-valued number and maps
it into the range [0,1], which is just what we want for a probability. Because it is
nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability
P(y = 1|x). How do we make a decision? For a test instance x, we say yes if the
probability P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision
boundary:decision

boundary

ŷ =
⇢

1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the
following 6 features x1...x6 of the input; Fig. 5.2 shows the features in a sample mini
test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(64) = 4.15

Let’s assume for the moment that we’ve already learned a real-valued weight
for each of these features, and that the 6 weights corresponding to the 6 features
are [2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section
how the weights are learned.) The weight w1, for example indicates how important

àdecision    
boundary

0.5

if w∙x+b > 0
if w∙x+b ≤ 0



Example
[卓, 琳, Cheuk, Lam, LLA]
x	=	[0.5,	0.7,	0.5,	0.6,	0.8]
w	=	[0.1,	0.8,	-0.1,	0.2,	0.7]
z =	w・x +	b
=	w1*x1+	w2*x2+	w3*x3+	w4*x4+	w5*x5+	b
=	0.05	+	0.56	+	(-0.05)	+	0.12	+	0.56	+	0.3
=	1.54
<𝑦 =	σ(z)	=	 !

!"#!"
=	 !

!"#!#.%&
=	0.82 >	0.5	à female



How to calculate weights?
Supervised classification: 
We know the correct label y (either 0 or 1) for each x. 
But what the system produces is an estimate, !𝑦

We want to know how far is the classifier output:
!𝑦= σ(w∙x+b)

from the true output:
y = either 0 or 1

We'll call this difference the loss:
L( !𝑦 ,y) = how much !𝑦 differs from the true y



Binary cross-entropy loss
Goal: maximize the probability of the correct label p(y|x)
Since there are only 2 outcomes (0 or 1), we can express the 
probability p(y|x) from our classifier as:

Now take the log of both sides:

Now flip sign to turn this into a loss: Something to minimize

5.3 • THE CROSS-ENTROPY LOSS FUNCTION 7

the cross-entropy loss.
The second thing we need is an optimization algorithm for iteratively updating

the weights so as to minimize this loss function. The standard algorithm for this is
gradient descent; we’ll introduce the stochastic gradient descent algorithm in the
following section.

5.3 The cross-entropy loss function

We need a loss function that expresses, for an observation x, how close the classifier
output (ŷ = s(w · x+b)) is to the correct output (y, which is 0 or 1). We’ll call this:

L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
simplifies to 1� ŷ):

p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
ŷ y (1� ŷ)1�y⇤

= y log ŷ+(1� y) log(1� ŷ) (5.10)

Eq. 5.10 describes a log likelihood that should be maximized. In order to turn this
into loss function (something that we need to minimize), we’ll just flip the sign on
Eq. 5.10. The result is the cross-entropy loss LCE:

LCE(ŷ,y) =� log p(y|x) = � [y log ŷ+(1� y) log(1� ŷ)] (5.11)

Finally, we can plug in the definition of ŷ = s(w · x+b):

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.12)

Let’s see if this loss function does the right thing for our example from Fig. 5.2. We
want the loss to be smaller if the model’s estimate is close to correct, and bigger if
the model is confused. So first let’s suppose the correct gold label for the sentiment
example in Fig. 5.2 is positive, i.e., y = 1. In this case our model is doing well, since
from Eq. 5.7 it indeed gave the example a higher probability of being positive (.69)
than negative (.31). If we plug s(w · x+b) = .69 and y = 1 into Eq. 5.12, the right
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L(ŷ,y) = How much ŷ differs from the true y (5.8)

We do this via a loss function that prefers the correct class labels of the train-
ing examples to be more likely. This is called conditional maximum likelihood
estimation: we choose the parameters w,b that maximize the log probability of
the true y labels in the training data given the observations x. The resulting loss
function is the negative log likelihood loss, generally called the cross-entropy loss.cross-entropy

loss
Let’s derive this loss function, applied to a single observation x. We’d like to

learn weights that maximize the probability of the correct label p(y|x). Since there
are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, and we can
express the probability p(y|x) that our classifier produces for one observation as
the following (keeping in mind that if y=1, Eq. 5.9 simplifies to ŷ; if y=0, Eq. 5.9
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if y=1, this simplifies to !𝑦
if y=0, this simplifies to 1- !𝑦
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p(y|x) = ŷ y (1� ŷ)1�y (5.9)

Now we take the log of both sides. This will turn out to be handy mathematically,
and doesn’t hurt us; whatever values maximize a probability will also maximize the
log of the probability:

log p(y|x) = log
⇥
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cross-entropy loss: negative log likelihood loss



Example
[卓, 琳, Cheuk, Lam, LLA]
x	=	[0.5,	0.7,	0.5,	0.6,	0.8]
w	=	[0.1,	0.8,	-0.1,	0.2,	0.7]
b	=	0.5
!𝑦 = σ(w・x +	b)	=	0.82

if卓琳 is	female:	y	=	1:
LCE( !𝑦, y) = -(ylog !𝑦 +(1-y)log(1- !𝑦)) = −log 0.82 = 0.2
if卓琳 is	male:	y	=	0:
LCE( !𝑦, y) = -(ylog !𝑦 +(1-y)log(1- !𝑦)) = −log 1 − 0.82 = 1.7

à The loss is greater when the prediction is wrong



Minimize the loss
Let's make explicit that the loss function is parameterized 
by weights 𝛳=(w,b)

And we’ll represent <𝑦 as f(x;θ) to make the dependence on 
θ more obvious

We want the weights that minimize the loss, averaged over 
all examples:

8 CHAPTER 5 • LOGISTIC REGRESSION

side of the equation drops out, leading to the following loss (we’ll use log to mean
natural log when the base is not specified):

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [logs(w · x+b)]
= � log(.70)
= .36

By contrast, let’s pretend instead that the example in Fig. 5.2 was actually negative,
i.e., y = 0 (perhaps the reviewer went on to say “But bottom line, the movie is
terrible! I beg you not to see it!”). In this case our model is confused and we’d want
the loss to be higher. Now if we plug y = 0 and 1�s(w · x+b) = .31 from Eq. 5.7
into Eq. 5.12, the left side of the equation drops out:

LCE(ŷ,y) = �[y logs(w · x+b)+(1� y) log(1�s(w · x+b))]
= � [log(1�s(w · x+b))]
= � log(.30)
= 1.2

Sure enough, the loss for the first classifier (.37) is less than the loss for the second
classifier (1.17).

Why does minimizing this negative log probability do what we want? A per-
fect classifier would assign probability 1 to the correct outcome (y=1 or y=0) and
probability 0 to the incorrect outcome. That means the higher ŷ (the closer it is
to 1), the better the classifier; the lower ŷ is (the closer it is to 0), the worse the
classifier. The negative log of this probability is a convenient loss metric since it
goes from 0 (negative log of 1, no loss) to infinity (negative log of 0, infinite loss).
This loss function also ensures that as the probability of the correct answer is max-
imized, the probability of the incorrect answer is minimized; since the two sum to
one, any increase in the probability of the correct answer is coming at the expense
of the incorrect answer. It’s called the cross-entropy loss, because Eq. 5.10 is also
the formula for the cross-entropy between the true probability distribution y and our
estimated distribution ŷ.

Now we know what we want to minimize; in the next section, we’ll see how to
find the minimum.

5.4 Gradient Descent

Our goal with gradient descent is to find the optimal weights: minimize the loss
function we’ve defined for the model. In Eq. 5.13 below, we’ll explicitly represent
the fact that the loss function L is parameterized by the weights, which we’ll refer
to in machine learning in general as q (in the case of logistic regression q = w,b).
So the goal is to find the set of weights which minimizes the loss function, averaged
over all examples:

q̂ = argmin
q

1
m

mX

i=1

LCE( f (x(i);q),y(i)) (5.13)



Gradient descent
How do I get to the bottom of this river canyon?

x

Look around me 360∘

Find the direction of 
steepest slope down
Go that way



Gradient descent for a single scaler
Minimize loss: Given the current w, Move w in the
reverse direction from the slope of the function

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

So we'll move positive

The gradient of a 
function of many 
variables is a vector 
pointing in the 
direction of the 
greatest increase in 
a function. 

Gradient descent:
Find the gradient of 
the loss function at 
the current point 
and move in the 
opposite direction. 



Gradient descent
The new weight wt+1 is the old weight wt minus the value
of the gradient weighted by a learning rate η
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example):

wt+1 = wt �h d
dw

L( f (x;w),y) (5.14)

Now let’s extend the intuition from a function of one scalar variable w to many
variables, because we don’t just want to move left or right, we want to know where
in the N-dimensional space (of the N parameters that make up q ) we should move.
The gradient is just such a vector; it expresses the directional components of the
sharpest slope along each of those N dimensions. If we’re just imagining two weight
dimensions (say for one weight w and one bias b), the gradient might be a vector with
two orthogonal components, each of which tells us how much the ground slopes in
the w dimension and in the b dimension. Fig. 5.4 shows a visualization of the value
of a 2-dimensional gradient vector taken at the red point.

Cost(w,b)

w
b

Figure 5.4 Visualization of the gradient vector at the red point in two dimensions w and b,
showing the gradient as a red arrow in the x-y plane.

In an actual logistic regression, the parameter vector w is much longer than 1 or
2, since the input feature vector x can be quite long, and we need a weight wi for
each xi. For each dimension/variable wi in w (plus the bias b), the gradient will have
a component that tells us the slope with respect to that variable. Essentially we’re
asking: “How much would a small change in that variable wi influence the total loss
function L?”

In each dimension wi, we express the slope as a partial derivative ∂
∂wi

of the loss
function. The gradient is then defined as a vector of these partials. We’ll represent ŷ
as f (x;q) to make the dependence on q more obvious:

—q L( f (x;q),y)) =

2

66664

∂
∂w1

L( f (x;q),y)
∂

∂w2
L( f (x;q),y)

...
∂

∂wn
L( f (x;q),y)

3

77775
(5.15)

The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)

gradient (a vector of the 
derivatives with respect 
to the weight w)

learning rate: Higher learning 
rate means move w faster
àa hyperparameter
not learned by algorithm from 
supervision, but are chosen by 
algorithm designer.



Gradient in N-dimensional space
The gradient expresses the
directional components of the
sharpest slope along each of
the N dimensions. For each
dimension wi, we express the
slope as a partial derivative ∂
of the loss ∂wi

The derivative of

is:
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learning rate times the gradient (or the slope, in our single-variable example):
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The final equation for updating q based on the gradient is thus

qt+1 = qt �h—L( f (x;q),y) (5.16)
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5.4.1 The Gradient for Logistic Regression
In order to update q , we need a definition for the gradient —L( f (x;q),y). Recall that
for logistic regression, the cross-entropy loss function is:

LCE(ŷ,y) = � [y logs(w · x+b)+(1� y) log(1�s(w · x+b))] (5.17)

It turns out that the derivative of this function for one observation vector x is
Eq. 5.18 (the interested reader can see Section 5.8 for the derivation of this equation):

∂LCE(ŷ,y)
∂w j

= [s(w · x+b)� y]x j (5.18)

Note in Eq. 5.18 that the gradient with respect to a single weight w j represents a
very intuitive value: the difference between the true y and our estimated ŷ = s(w ·
x+b) for that observation, multiplied by the corresponding input value x j.

5.4.2 The Stochastic Gradient Descent Algorithm
Stochastic gradient descent is an online algorithm that minimizes the loss function
by computing its gradient after each training example, and nudging q in the right
direction (the opposite direction of the gradient). Fig. 5.5 shows the algorithm.

function STOCHASTIC GRADIENT DESCENT(L(), f (), x, y) returns q
# where: L is the loss function
# f is a function parameterized by q
# x is the set of training inputs x(1), x(2), ..., x(m)

# y is the set of training outputs (labels) y(1), y(2), ..., y(m)

q 0
repeat til done # see caption

For each training tuple (x(i), y(i)) (in random order)
1. Optional (for reporting): # How are we doing on this tuple?

Compute ŷ (i) = f (x(i);q) # What is our estimated output ŷ?
Compute the loss L(ŷ (i),y(i)) # How far off is ŷ(i)) from the true output y(i)?

2. g —q L( f (x(i);q),y(i)) # How should we move q to maximize loss?
3. q q � h g # Go the other way instead

return q

Figure 5.5 The stochastic gradient descent algorithm. Step 1 (computing the loss) is used
to report how well we are doing on the current tuple. The algorithm can terminate when it
converges (or when the gradient norm < ✏), or when progress halts (for example when the
loss starts going up on a held-out set).

The learning rate h is a hyperparameter that must be adjusted. If it’s too high,hyperparameter
the learner will take steps that are too large, overshooting the minimum of the loss
function. If it’s too low, the learner will take steps that are too small, and take too
long to get to the minimum. It is common to start with a higher learning rate and then
slowly decrease it, so that it is a function of the iteration k of training; the notation
hk can be used to mean the value of the learning rate at iteration k.

We’ll discuss hyperparameters in more detail in Chapter 7, but briefly they are
a special kind of parameter for any machine learning model. Unlike regular param-
eters of a model (weights like w and b), which are learned by the algorithm from
the training set, hyperparameters are special parameters chosen by the algorithm
designer that affect how the algorithm works.
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Example
[卓, 琳, Cheuk, Lam, LLA]
x	=	[0.5,	0.7,	0.5,	0.6,	0.8]

1. initialize w and b, set η
w	=	[0,	0,	0,	0,	0],	b	=	0,	η =	0.1

2. compute !𝑦
!𝑦 = σ(w・x +	b)	=	0.5

3. compute the gradients for w and b
Gw =	(0.5– y)x=	-0.5x	=	[-0.25,	-0.35,	-0.25,	-0.3,	-0.4]
Gb	=	0.5– y	=	-0.5

4. update w and b
wt+1	=	wt – η*Gw =	[0,	0,	0,	0,	0]	– 0.1*[-0.25,	-0.35,	-0.25,	-0.3,	-0.4]		=	[0.025,	0.035,	
0.205,	0.03,	0.04]
bt+1	=	bt – η*Gb	=	0- 0.1*(-0.5)	=	0.05



Calculate gradient descent over all examples
[卓, 琳, Cheuk, Lam, LLA] x1=	[0.5,	0.7,	0.5,	0.6,	0.8]
[承, 璋, Shing Cheung, LLA] x2=	[-0.6,	-0.8,	-0.1,	-0.6,	0.8]

1. initialize w and b, set η
w	=	[0,	0,	0,	0,	0],	b	=	0,	η =	0.1

2. compute !𝑦
!𝑦1= σ(w・x +	b)	=	0.5,	 !𝑦2= σ(w・x +	b)	=	0.5

3. compute the gradients for w and b
Gw =	!"((0.5– y)x1+ (0.5– y)x2)	=	

!
" (-0.5x1-0.5x2)	=	[0.025,	0.025,	-0.1,	0,	-0.2]

Gb	=	!" ((0.5– y1)+(0.5-y2))	=	0

4. update w and b
wt+1	=	wt – η*Gw =	[0,	0,	0,	0,	0]	– 0.1*[0.025,	0.025,	-0.1,	0,	-0.2]	=	[-0.0025,	-0.0025,	
0.01,	0,	0.02] ,	bt+1	=	bt – η*Gb	=	0


