

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 11: Logistic Regression

Simple linear regression & multiple regression

Model comparison

Model	F	p	R ²	R ² adjusted	VIF
RATL	67.77	3.419e-15	0.158	0.156	1
LPTL	115	< 2.2e-16	0.242	0.24	1
LIFG	38.87	1.27e-09	0.097	0.095	1
RATL+LPTL	95.09	< 2.2e-16	0.346	0.343	1.03
RATL+LIFG	34.88	1.438e-14	0.163	0.158	1.78
LPTL+LIFG	81.8	< 2.2e-16	0.313	0.309	1.01
RATL+LPTL+LIFG	64.67	< 2.2e-16	0.352	0.346	1.81,1.03,1.78

Logistic regression

When the dependent variable (y) is binary (0 or 1): e.g., a person's name is male or female? a movie review if positive or negative?

an email is spam or not?

The task of text classification

- Input:
 - a document x
 - two classes $C = \{c_1, c_2\}$
- *Output*: a predicted class $\hat{y} \in C$

Features in logistic regression

Input vector: $x = [x_1, x_2, ..., x_n]$

[卓, 琳, Cheuk, Lam, LLA] Probability of these features in female names: $\rightarrow x = [0.5, 0.7, 0.5, 0.6, 0.8]$

Weights: one per feature: $w = [w_1, w_2, ..., w_n]$ $\rightarrow w = [0.1, 0.8, -0.1, 0.2, 0.7]$

Prediction: $z = w \cdot x + b$

$$z = w_1^* x_1 + w_2^* x_2 + w_3^* x_3 + w_4^* x_4 + w_5^* x_5 + b$$

= 0.05 + 0.56 + (-0.05) + 0.12 + 0.56 + 0.3
= 1.54

Transform prediction into probability

$$z = w \cdot x + b$$

z is a number, but we We'd like a classifier that gives us a probability

Solution: use a function of z that goes from 0 to 1

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$
 \rightarrow the sigmoid function

The sigmoid function

 $\hat{y} = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} + \mathbf{b} > \mathbf{0} \\ 0 & \text{if } \mathbf{w} \cdot \mathbf{x} + \mathbf{b} \le \mathbf{0} \end{cases}$

Example

[卓,琳,Cheuk,Lam,LLA] x = [0.5, 0.7, 0.5, 0.6, 0.8]w = [0.1, 0.8, -0.1, 0.2, 0.7] $z = w \cdot x + b$ $= w_1^*x_1 + w_2^*x_2 + w_3^*x_3 + w_4^*x_4 + w_5^*x_5 + b$ = 0.05 + 0.56 + (-0.05) + 0.12 + 0.56 + 0.3= 1.541 1

$$\hat{y} = \sigma(z) = \frac{1}{1+e^{-z}} = \frac{1}{1+e^{-1.54}} = 0.82 > 0.5 \rightarrow \text{female}$$

How to calculate weights?

Supervised classification:

We know the correct label y (either 0 or 1) for each x. But what the system produces is an estimate, \hat{y}

We want to know how far is the classifier output:

 $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$

from the true output:

y = either 0 or 1

We'll call this difference the loss:

 $L(\hat{y}, y) = \text{how much } \hat{y} \text{ differs from the true } y$

Binary cross-entropy loss

Goal: maximize the probability of the correct label p(y|x)Since there are only 2 outcomes (0 or 1), we can express the probability p(y|x) from our classifier as:

$$p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$$
 if y=1, this simplifies to \hat{y}
if y=0, this simplifies to 1- \hat{y}

Now take the log of both sides:

$$log p(y|x) = log [\hat{y}^{y} (1-\hat{y})^{1-y}]$$

= $y log \hat{y} + (1-y) log (1-\hat{y})$

Now flip sign to turn this into a loss: Something to **minimize**

 $L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$ cross-entropy loss: negative log likelihood loss

Example

[卓, 琳, Cheuk, Lam, LLA] x = [0.5, 0.7, 0.5, 0.6, 0.8]w = [0.1, 0.8, -0.1, 0.2, 0.7]b = 0.5 $\hat{y} = \sigma(w \cdot x + b) = 0.82$

if 卓琳 is female: y = 1: $L_{CE}(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y})) = -\log(0.82) = 0.2$ if 卓琳 is male: y = 0: $L_{CE}(\hat{y}, y) = -(y \log \hat{y} + (1-y)\log(1-\hat{y})) = -\log(1-0.82) = 1.7$

\rightarrow The loss is greater when the prediction is wrong

Minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w, b)$

And we'll represent \hat{y} as $f(x;\theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(f(x^{(i)}; \theta), y^{(i)})$$

Gradient descent

How do I get to the bottom of this river canyon?

Look around me 360° Find the direction of steepest slope down Go that way

Gradient descent for a single scaler

Minimize loss: Given the current w, Move w in the reverse direction from the slope of the function

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient descent: Find the gradient of the loss function at the current point and move in the opposite direction.

Gradient descent

The new weight w^{t+1} is the old weight w^t minus the value of the gradient weighted by a learning rate η

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x;w),y)$$

learning rate: Higher learning
rate means move w faster
→ a hyperparameter

not learned by algorithm from supervision, but are chosen by algorithm designer. **gradient** (a vector of the derivatives with respect to the weight w)

Gradient in N-dimensional space

The gradient expresses the directional components of the sharpest slope along each of the N dimensions. For each dimension w_i , we express the slope as a partial derivative ∂ of the loss ∂w_i

The derivative of

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

is:

$$\frac{\partial L_{\rm CE}(\hat{y}, y)}{\partial w_j} = [\boldsymbol{\sigma}(w \cdot x + b) - y] x_j$$

Example

[卓, 琳, Cheuk, Lam, LLA] x = [0.5, 0.7, 0.5, 0.6, 0.8]

1. initialize w and b, set $\eta w = [0, 0, 0, 0, 0], b = 0, \eta = 0.1$

2. compute \hat{y} $\hat{y} = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) = 0.5$

3. compute the gradients for w and b Gw = (0.5 - y)x = -0.5x = [-0.25, -0.35, -0.25, -0.3, -0.4]Gb = 0.5 - y = -0.5

4. update w and b $w_{t+1} = w_t - \eta^* Gw = [0, 0, 0, 0, 0] - 0.1^* [-0.25, -0.35, -0.25, -0.3, -0.4] = [0.025, 0.035, 0.205, 0.03, 0.04]$ $b_{t+1} = b_t - \eta^* Gb = 0 - 0.1^* (-0.5) = 0.05$

Calculate gradient descent over all examples

- [卓, 琳, Cheuk, Lam, LLA] x₁ = [0.5, 0.7, 0.5, 0.6, 0.8] [承, 璋, Shing Cheung, LLA] x₂ = [-0.6, -0.8, -0.1, -0.6, 0.8]
- 1. initialize w and b, set $\eta w = [0, 0, 0, 0, 0], b = 0, \eta = 0.1$
- 2. compute \hat{y} $\hat{y}_1 = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) = 0.5$, $\hat{y}_2 = \sigma(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) = 0.5$

3. compute the gradients for w and b $Gw = \frac{1}{2}((0.5-y)x_1 + (0.5-y)x_2) = \frac{1}{2}(-0.5x_1 - 0.5x_2) = [0.025, 0.025, -0.1, 0, -0.2]$ $Gb = \frac{1}{2}((0.5-y_1) + (0.5-y_2)) = 0$

4. update w and $b \\ w_{t+1} = w_t - \eta^* Gw = [0, 0, 0, 0, 0] - 0.1^* [0.025, 0.025, -0.1, 0, -0.2] = [-0.0025, -0.0025, 0.01, 0, 0.02]$, $b_{t+1} = b_t - \eta^* Gb = 0$