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Model comparison

Model F p R? R2 adjusted VIF

RATL 67.77 3.419e-15 0.158 0.156 1

LPTL 115 < 2.2e-16 0.242 0.24 1

LIFG 38.87 1.27e-09 0.097 0.095 1
RATL+LPTL 95.09 < 2.2e-16 0.346 0.343 1.03
RATL+LIFG 34.88 1.438e-14 0.163 0.158 1.78
LPTL+LIFG 81.8 < 2.2e-16 0.313 0.309 1.01

RATL+LPTL+LIFG 64.67 < 2.2e-16 0.352 0.346 1.81,1.03,1.78




Logistic regression

When the dependent variable (y) is binary (0 or 1):
e.g., a person’s name is male or female?

a movie review if positive or negative?

an email is spam or not?

The task of text classification

« Input:
« a document x
« two classes C = {cq, G}

« Output: a predicted class y € C



Features In logistic regression

Input vector: x =[x, x,, ..., X,]

[, Bf, Cheuk, Lam, LLA]

Probability of these features in female names:
> x=[0.5,0.7,0.5, 0.6, 0.8]

Weights: one per feature: w=[w,, w,, .., w,]
> w=1[0.1,0.8,-0.1, 0.2, 0.7]

Prediction: z=w - x+b

Z = WX + wo'X, + wi*x; + w,tx, + we*xe + b
=0.05+0.56 + (-0.05) + 0.12 + 0.56 + 0.3
= 1.54



Transform prediction into probability

z = w-x+b5b

z is a number, but we We'd like a classifier that gives us a probability

Solution: use a function of z that goes from 0 to 1

1 1
— e — 1 +exp(—z) > the sigmoid function

y=o0(z)



The sigmoid function
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Example

[, Ik, Cheuk, Lam, LLA]

x =10.5,0.7,0.5, 0.6, 0.8]

w = [0.1, 0.8,-0.1, 0.2, 0.7]

Z=W *X+Db
= WX + Wy X, + W3™Xs + W, X, + WX + b
=0.05+0.56 + (-0.05) + 0.12 + 0.56 + 0.3
= 1.54

1 1

y=o0(z) = = =0.82 > 0.5 2 female

1+e %2 14+e~154




How to calculate weights?

Supervised classification:
We know the correct label y (either O or 1) for each x.
But what the system produces is an estimate, y

We want to know how far is the classifier output:
y = o(w-X+Db)

from the true output:
y = either O or 1

We'll call this difference the loss:
L(y,y) = how much y differs from the true y



Binary cross-entropy loss

Goal: maximize the probability of the correct label p(y|x)

Since there are only 2 outcomes (0 or 1), we can express the
probability p(y|x) from our classifier as:

x) = V(1 =9)17Y if y=1, this simplifies to y
pOR) y(1-3) if y=0, this simplifies to 1-

Now take the log of both sides:
logp(ylx) = log[$” (1—5)" ]
= ylogy+ (1 —y)log(1—3)
Now flip sign to turn this into a loss: Something to minimize

Leg(9,y) = —logp(ylx) = —|[ylog9+ (1 —y)log(l—3J)]
cross-entropy loss: negative log likelihood loss




Example

[&2, Bk, Cheuk, Lam, LLA]
x =[0.5, 0.7, 0.5, 0.6, 0.8]

w =[0.1,0.8,-0.1, 0.2, 0.7]
b=0.5
y=o(w*x+b)=0.82

if 2 is female: y = 1:

Lee(P,y) = -(ylog ¥ +(1-y)log(1- §)) = —log(0.82) = 0.2

if E2If is male: y = 0:

Lee(D,y) = -(ylog ¥ +(1-y)log(1-y)) = —log(1 — 0.82) = 1.7

- The loss is greater when the prediction is wrong




Minimize the loss

Let's make explicit that the loss function is parameterized
by weights 6=(w,b)

And we’ll represent y as f(x;0) to make the dependence on
O more obvious

We want the weights that minimize the loss, averaged over
all examples:

H — argmin l ZLCE (f(x(i); 9),y(i))
o M3




Gradient descent

How do I get to the bottom of this river canyon?

Look around me 360°

Find the direction of
steepest slope down

Go that way




Gradient descent for a single scaler

Minimize loss: Given the current w, Move w in the
reverse direction from the slope of the function

A
Loss

one step
of gradient

slope of loss at Wl//' descent

1s negative

So we'll move positive

The gradient of a
function of many
variables is a vector
pointing in the
direction of the
greatest increase in
a function.

Gradient descent:
Find the gradient of
the loss function at
the current point
and move in the
opposite direction.



Gradient descent

The new weight wttlis the old weight wt minus the value
of the gradient weighted by a learning rate n

W =~ o L))

dw
— ~~
learning rate: Higher learning gradient (a vector of the
rate means move w faster derivatives with respect
- a hyperparameter to the weight w)

not learned by algorithm from
supervision, but are chosen by
algorithm designer.




Gradient in N-dimensional space
Cost(w,b)

The gradient expresses the
directional components of the
sharpest slope along each of
the N dimensions. For each
dimension w;, we express the
slope as a partial derivative o
of the loss aw;

The derivative of
Lce(¥,y) = —[ylogo(w-x+b)+(1—y)log(l—0c(w-x+b))]
IS:

aLCE (yvy)

e = |[o(w-x+D) —ylx;




Example

[, B, Cheuk, Lam, LLA]
x = [0.5, 0.7, 0.5, 0.6, 0.8]

1. initialize w and b, set n
w=1[0,0,0,0,0],b=0,1=0.1

2. compute y
y=o(w- -x+b)=05

3. compute the gradients for w and b
Gw = (0.5- y)x = -0.5x = [-0.25, -0.35, -0.25, -0.3, -0.4]
Gb =0.5-y =-0.5

4. update w and b
W =W, - *Gw = [0, 0, 0, 0, 0] - 0.1*[-0.25, -0.35, -0.25, -0.3, -0.4] = [0.025, 0.035,

0.205, 0.03, 0.04]
b.., = b, - n*Gb = 0- 0.1*(-0.5) = 0.05




Calculate gradient descent over all examples

[2, ¥, Cheuk, Lam, LLA] x, =[0.5,0.7, 0.5, 0.6, 0.8]
[7%, ¥&, Shing Cheung, LLA] x, =[-0.6,-0.8,-0.1, -0.6, 0.8]

1. initialize w and b, set n
w=1[0,0,0,0,0],b=0,1=0.1

2. compute y
y1=0(w-x+Db)=0579,=0c(w-x+Db)=0.5

3. compute the gradients for w and b
Gw = =((0.5- y)x;+ (0.5- y)x,) = = (-0.5%;-0.5%;) = [0.025, 0.025, -0.1, 0, -0.2]

Gb =2 ((0.5-y1)+(0.5-y2)) =0

4. update w and b
W =W, - 1N*Gw = [0, 0, 0, 0, 0] - 0.1*[0.025, 0.025, -0.1, 0, -0.2] = [-0.0025, -0.0025,
0.01,0,0.02],b.,;=b,-n*Gb =0




