

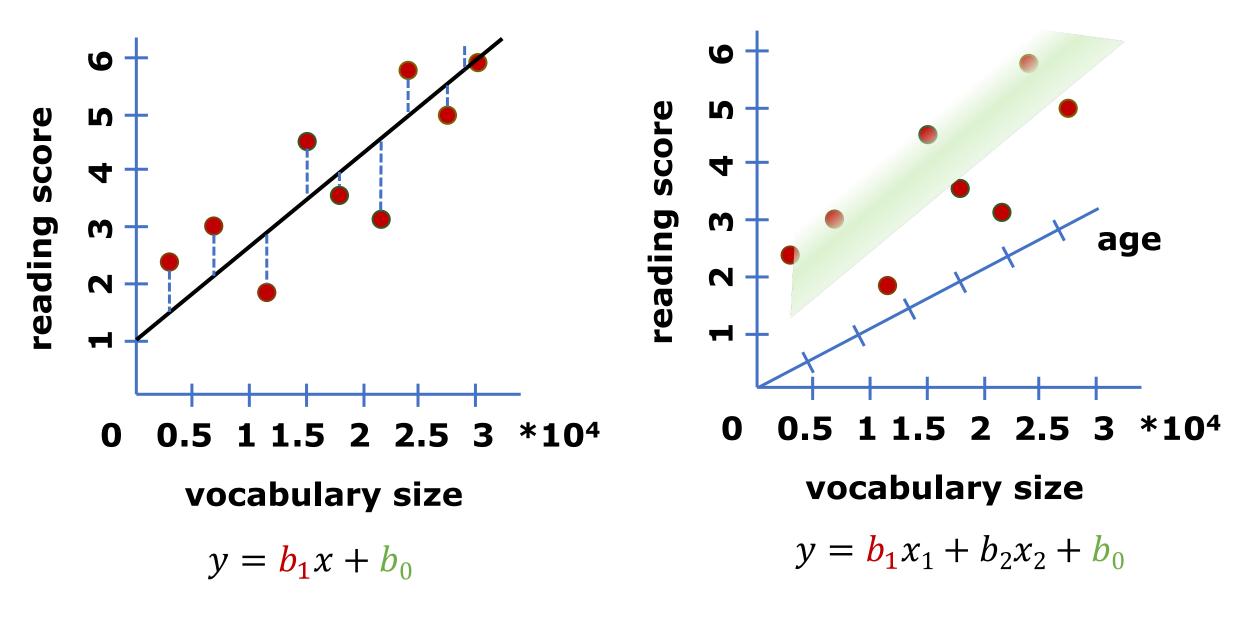
Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 12: Linear Mixed-effects Model

Simple linear regression & multiple regression



Logistic regression

When the dependent variable is binary \rightarrow a classification task: a name is male or female

$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)} \quad \Rightarrow \text{ the sigmoid function}$$

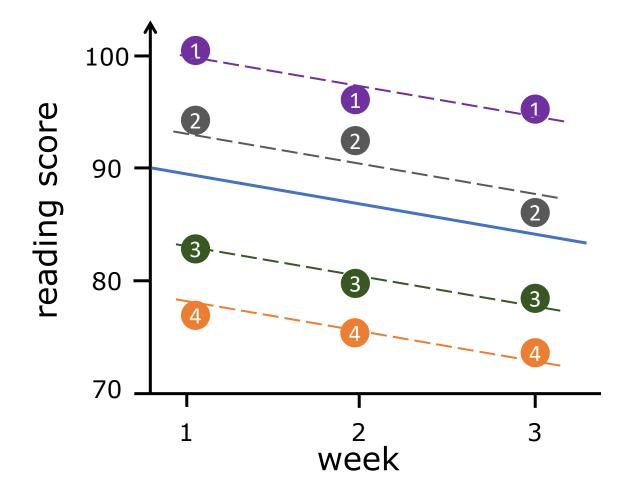
Example

[卓,琳,Cheuk,Lam,LLA] x = [0.5, 0.7, 0.5, 0.6, 0.8]w = [0.1, 0.8, -0.1, 0.2, 0.7] $z = w \cdot x + b$ $= w_1^*x_1 + w_2^*x_2 + w_3^*x_3 + w_4^*x_4 + w_5^*x_5 + b$ = 0.05 + 0.56 + (-0.05) + 0.12 + 0.56 + 0.3= 1.541 1

$$\hat{y} = \sigma(z) = \frac{1}{1+e^{-z}} = \frac{1}{1+e^{-1.54}} = 0.82 > 0.5 \rightarrow \text{female}$$

Linear mixed-effects model (LMM)

When to use: Studies that obtain multiple measurements over time (longitudinal, time-series) or multiple trials per participant (within subjects)



Fixed effects: variables you are interested in, population-level variables

Random effects:

uncontrollable variability, subject-level variance

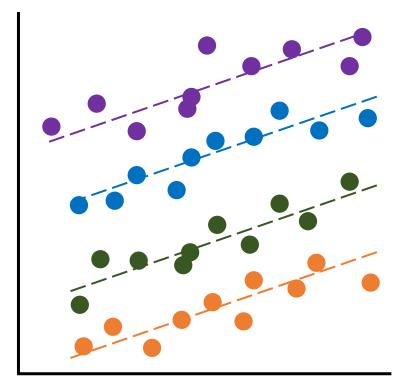
LMM vs. LM



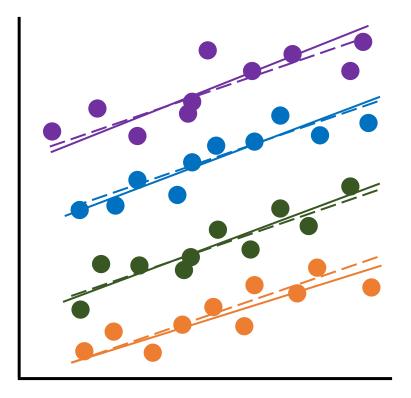
Accounting for individual differences reduces Sum of Squares Total (SST)

Random slope and intercept

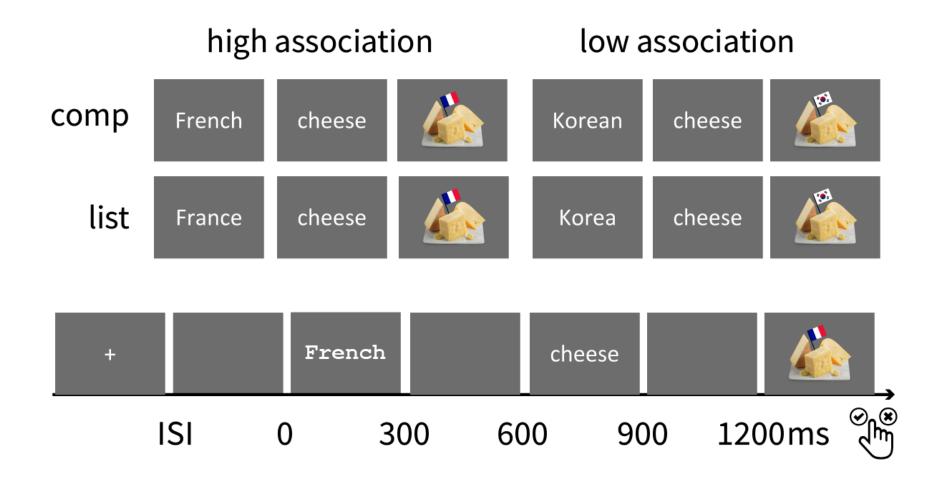
varying intercept only y \sim x + (1|group)



varying slope and intercept $y \sim x + (x|group)$

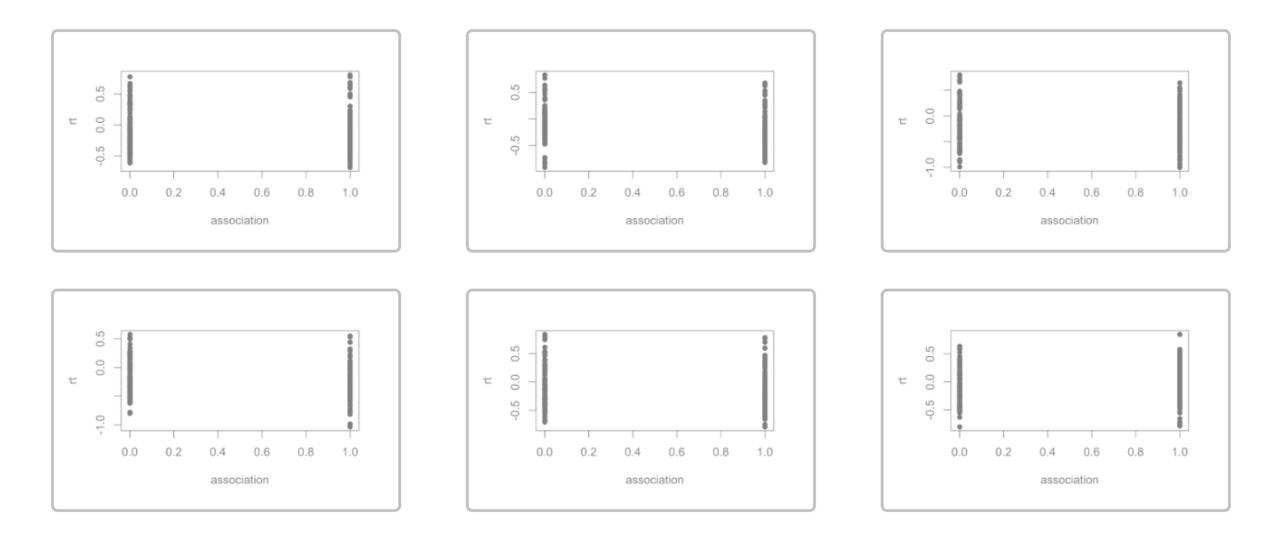


Example: Semantic composition vs. association



Each subject completed around 200 trials

Plot each subject's data



Multiple regression

md1 = lm(rt~composition+association+w1_freq+w2_freq,data=semassoc)
summary(md1)

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	0.513117	0.089824	5.712	1.15e-08	***
composition	-0.004677	0.010589	-0.442	0.6587	
association	-0.026523	0.010573	-2.508	0.0121	*
w1_freq	-0.017687	0.004278	-4.134	3.60e-05	***
w2_freq	-0.014376	0.002526	-5.692	1.30e-08	***

LLM with random intercept

```
install.packages('lmerTest')
library(lmerTest)
md2 = lmer(rt~composition+association+w1_freq+w2_freq+(1|subj),data=semassoc)
summary(md2)
```

Fixed effects: Estimate Std. Error df t value Pr(>|t|) 5.962 3.40e-09 *** (Intercept) 5.091e-01 8.538e-02 1.041e+03 composition -6.339e-03 9.077e-03 7.725e+03 -0.698 0.48496 -2.971 0.00298 association -2.693e-02 9.064e-03 7.725e+03 ** w1_freq -1.716e-02 3.668e-03 *** 7.725e+03 -4.678 2.95e-06 *** w2_freq -1.419e-02 2.165e-03 7.725e+03 -6.552 6.06e-11

LLM with random intercept and slope

md3 = lmer(rt~composition+association+w1_freq+w2_freq+(association|subj), data=semassoc) summary(md3)

Fixed effects:

Estimate Std. Errordf t value Pr(>|t|)(Intercept)5.023e-018.395e-021.222e+035.9832.88e-09 ***composition-6.247e-039.015e-037.688e+03-0.6930.4884association-2.935e-021.692e-024.256e+01-1.7340.0901.w1_freq-1.682e-023.653e-037.718e+03-4.6064.18e-06***w2_freq-1.403e-022.151e-037.690e+03-6.5217.41e-11***

LLM with random intercept and slope

md4 = lmer(rt~composition+association+w1_freq+w2_freq+(association+composition|subj)
,data=semassoc,REML=F)
summary(md4)

boundary (singular) fit: see help('isSingular')

Fixed effects: Estimate Std. Error df t value Pr(>|t|) 6.035 2.05e-09 *** (Intercept) 5.027e-01 8.330e-02 1.372e+03composition -5.548e-03 9.314e-03 -0.596 0.5519 2.893e+02 association -2.924e-02 1.674e-02 4.365e+01 -1.746 0.0878 . w1_freq -1.688e-02 3.651e-03 -4.622 3.86e-06 7.714e+03 *** *** w2_freq -1.402e-02 2.150e-03 7.693e+03 -6.522 7.36e-11

Model comparison

```
anova(md2,md3,md4)
```

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)	
md2	7	7968.2	8016.9	-3977.1	7954.2				
md3	9	7909.9	7972.5	-3946.0	7891.9	62.2936	2	2.973e-14	***
md4	12	7913.3	7996.8	-3944.7	7889.3	2.5879	3	0.4596	

Look for model with smaller AIC, BIC and larger log likelihood ratio