

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 4: Hypothesis testing Slides adapted from Cecilia Earls

Histograms

80

Boxplots

Scatterplots

Prestige by Education

Years of Education

Statistical hypothesis testing

Statistical hypotheses: Statements made about a specific value of a population parameter (e.g., μ).

Hypothesis test: Statistical method for evaluating the degree to which evidence favors (or does not favor) the alternative hypothesis over the null hypothesis.

- H₀: null hypothesis ("nothing going on")
- H_a: alternative hypothesis ("something going on")

Tests for a population mean

Let μ_0 be a specific value of the population mean of direct interest, then we can test **one** of the following three sets of hypotheses:

H₀: $\mu = \mu_0$ vs. H_a: $\mu \neq \mu_0$ Two-sided tests H₀: $\mu \leq \mu_0$ vs. H_a: $\mu > \mu_0$ One-sided tests H₀: $\mu \geq \mu_0$ vs. H_a: $\mu < \mu_0$

Goal: Create objective framework in which we can

- Make a decision about H₀ vs. H_a using data (e.g., $\overline{X_n}$)
- Evaluate whether the observed value of our statistic (e.g., $\overline{X_n}$) seems reasonable if H₀ is indeed true.

Idea: Use the known behavior of $\overline{X_n}$ under SRS (Simple Random Sampling)

- Construct sampling distribution of $\overline{X_n}$ under H₀ (e.g., with $\mu = \mu_0$). This gives us information on "likely" values of sample mean seen under SRS, assuming $\mu = \mu_0$.
- Use this distribution to evaluate how likely we would be to observe a value more extreme than that obtained from SRS, $\overline{X_n}$, assuming $\mu = \mu_0$.

 $X_i, i = 1, ..., 100, iid, E(X_i) = \mu; SD(X_i) = 100$ We know under certain conditions... $\overline{X}_{100} \sim N(\mu, 100^2/100)$

Assume! $\mu = 50$ Then: $\bar{X}_{100} \sim N(50, 100^2/100)$ under H₀

How do we make a formal decision about H_0 ?

Decision Rules, Type I & Type II Errors, and Rejection Regions

To structure the decision making process, we need:

- 1. A decision rule that allows us to decide whether the observed value of $\overline{X_n}$ should be judged consistent with H₀ (i.e., with $\mu = \mu_0$) or supportive of H_a over H₀.
- 2. A way to include the possibility of making an error in either direction, and to assess its impact.

- Data \rightarrow decision between: Reject H₀ or Do not reject H₀
- View Ho as the null situation "nothing is going on":

standard assumption is true

- View $H_{\mbox{\scriptsize a}}$ as the opposite situation "something is going on"

standard assumption not true – usually the research hypothesis

- Two possible types of error: Type I & Type II
 - Type I error: Reject Ho when Ho is actually true "false positive"
 - Type II error: Do not reject H₀ when H₀ is actually false, that is, when H_a is true – "false negative"

- We want: P(Type I error) ≈ 0 and P(Type II error) ≈ 0 How can we approach this? How well can we do?
- For a hypothesis test:
 - We specify (control) the Type I error rate, i.e., limit the "false positive" rate.
 - After fixing Type I error rate, Type II error rate can often be reduced by increasing the sample size (reduces variability)
- Type I error rate := significance level = size of test: usually denoted by $\alpha = 0.05$:

 $P(Type I error) = P(reject H_0 | H_0 true) = 0.05$

So under H₀, this test mistakenly rejects H₀ 5% of the time.

- Smaller $\alpha \rightarrow$ less chance of false positive result
- Common choices: $\alpha = 0.05, 0.01, 0.001$

• Type II error rate: Usually denoted by β . Then:

 $P(Type II error) = P(fail to reject H_0 | H_a true)$

Power = $1 - P(Type | I error) = P(reject H_0 | H_a true)$

Tests with low power are basically useless. However, the researcher can often increase power by increasing sample size.

Hypothesis Testing

• First Steps:

- Set type I error rate, α
- Ha (≠ or > or <) & Ho (= or ≤ or ≥)
- Determine sample size to control type II error rate
- Collect SRS

• Determine:

- Distribution of (standardized) test statistic under H₀
- Using this distribution make a decision based on either:
 - Rejection Region
 - p-value
- Finish: check assumptions, draw conclusions

Hypotheses we will consider for μ **:**

- Ha: $\mu > \mu_0$ vs. Ho: $\mu \le \mu_0$
- Ha: $\mu < \mu_0$ vs. Ho: $\mu \ge \mu_0$
- Ha: $\mu \neq \mu_0$ vs. Ho: $\mu = \mu_0$

 μ_0 = hypothesized mean used to calculate the test statistic for all three hypotheses – it is known quantity

- *H*^{*a*} usually reflects what the researcher would like to know. Is something different going on than what has previously been assumed?
- Can use a rejection region or a p-value to make a decision about whether something different is going on.

The Standardized Test Statistic

Assume X_i , i = 1, ..., n is a SRS from some population with mean, μ , and variance σ^2 . Under H_0 we will assume $\mu = \mu_0$. Then:

• If σ is known, the following is the standardized test statistic under H_0 .

$$\frac{\bar{X}_n - \mu_0}{\sigma/\sqrt{n}}$$

• If σ is unknown, the following is the standardized test statistic under H_0 .

$$\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}$$

Decision making using a rejection region (RR):

 RR = range of values of the standardized test statistic for which you will reject H0 if you realized standardized test statistic is in this range. For example:

 $\frac{\bar{x}_n - \mu_0}{\sigma / \sqrt{n}} > 1.96 \text{ is one possile } RR$

- RR depends on
 - Distribution of the standardized test statistic
 - Type I error rate
 - H_a (Will you reject if $\frac{\bar{x}_n \mu_0}{\sigma/\sqrt{n}}$ is big? Small? Big in absolute value?)

Basic principle in choosing rejection region:

- If Ha: $\mu > \mu_0$ is true, then deviations of \overline{X}_n from μ_0 in the positive direction (i.e., $\overline{X}_n > \mu_0$) should be considered as evidence against H₀.
- If H_a: $\mu < \mu_0$ is true, then deviations of \overline{X}_n from μ_0 in the negative direction (i.e., $\overline{X}_n < \mu_0$) should be considered as evidence against H₀.
- If H_a : $\mu \neq \mu_0$ is true, then deviations of \overline{X}_n in either direction away from μ_0 are evidence against H_0 .

In each case: α dictates how far \overline{X}_n must be from μ before we conclude that the data provide more support for H_a.

Rejection Region Approach: σ known

1. Specify H0, Ha, & $\alpha = P(Type I error)$ 2. Compute Test Statistic (T.S.)

- Value depends on sample collected
- Obtain its sampling distribution under assumption that H₀ is true.

3. Determine Rejection Region (R.R.)

• Specifies both the direction(s) and magnitude of deviations from the population mean that we regard as representing evidence against Ho

4. Decision / Conclusion :

• If T.S. falls in R.R., then reject H₀ in favor of H_a; otherwise, fail to reject the null hypothesis H₀.

5. Check assumptions

Example: $H_0: \mu \le \mu_0$ $H_a: \mu > \mu_0$

T.S. $Z^* = \frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}}$

R.R. $Z^* > Z_{\alpha}$

For the two other forms of Ha, the relevant RRs are: (ii) Ha: $\mu < \mu_0 \leftrightarrow Z^* < -Z_{\alpha}$ (iii) Ha: $\mu \neq \mu_0 \leftrightarrow |Z^*| > -Z_{\alpha/2}$

This analysis <u>assumes</u> the standardized test statistic has a N(0,1) distribution.

Consider the test for H0: $\mu \le \mu_0$ vs. Ha: $\mu > \mu_0$ In this case, values of \overline{X}_n bigger than μ_0 are evidence against H₀.

The realization of the standardized test statistic, $Z^* = \frac{\bar{x}_n - \mu_0}{\sigma/\sqrt{n}}$, measures how many standard errors away the observed value lies from μ_0 . For this H_a , anything greater than 2 is fairly good evidence against H_0 . 2 is a little arbitrary; using z_α limits the type 1 error rate to be at most α .

Why does the RR given as $Z^* > Z_{\alpha}$ limit the type I error rate to be at most α ?

Suppose
$$\alpha = 0.05$$

Key idea: under repeated SRSs from a population with mean μ_0 and SD σ , we <u>know</u> the approximate sampling distribution of the standardized statistic. In particular, we have

$$P(\frac{\bar{x}_n - \mu_0}{\frac{\sigma}{\sqrt{n}}} > Z_\alpha) = \alpha$$

