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Statistical hypothesis testing
Statistical hypotheses: Statements made about a
specific value of a population parameter (e.g., µ).

Hypothesis test: Statistical method for evaluating the 
degree to which evidence favors (or does not favor) the 
alternative hypothesis over the null hypothesis.

• H0: null hypothesis (“nothing going on”)
• Ha: alternative hypothesis (“something going on”)



Tests for a population mean
Let µ0 be a specific value of the population mean
of direct interest, then we can test one of the
following three sets of hypotheses:

H0: µ=µ0 vs. Ha: µ≠µ0

H0: µ≤µ0 vs. Ha: µ>µ0

H0: µ≥µ0 vs. Ha: µ<µ0

Two-sided tests

One-sided tests



Goal: Create objective framework in which 
we can

• Make a decision about H0 vs. Ha using data (e.g., 𝑋!)
• Evaluate whether the observed value of our statistic (e.g., 𝑋!)

seems reasonable if H0 is indeed true.

Idea: Use the known behavior of 𝑋! under 
SRS (Simple Random Sampling)

• Construct sampling distribution of 𝑋! under H0 (e.g., with 𝜇 =
𝜇" ). This gives us information on “likely” values of sample
mean seen under SRS, assuming 𝜇 = 𝜇".

• Use this distribution to evaluate how likely we would be to
observe a value more extreme than that obtained from SRS,
𝑋!, assuming 𝜇 = 𝜇".



We know under certain conditions…
𝑋! , 𝑖 = 1,… , 100, 𝑖𝑖𝑑, 𝐸 𝑋! = 𝜇; 𝑆𝐷 𝑋! = 100

.𝑋"##~𝑁(𝜇, 100$/100)

Assume! Then:𝜇 = 50 .𝑋"##~𝑁(50, 100$/100) under H0

If 𝐻0 is true, is 𝑥̅"## = 25 a likely value?
How do we make a formal decision about 𝐻0?



Decision Rules, Type I & Type II Errors, and 
Rejection Regions

To structure the decision making process, we need:

1. A decision rule that allows us to decide whether the
observed value of 𝑋% should be judged consistent with
H0 (i.e., with 𝜇 = 𝜇#) or supportive of Ha over H0.

2. A way to include the possibility of making an error in
either direction, and to assess its impact.



• Data → decision between: Reject H0 or Do not reject H0

• View H0 as the null situation “nothing is going on”:

standard assumption is true
• View Ha as the opposite situation “something is going on”

standard assumption not true – usually the research hypothesis

• Two possible types of error: Type I & Type II
• Type I error: Reject H0 when H0 is actually true – “false positive”
• Type II error: Do not reject H0 when H0 is actually false, that is, when

Ha is true – “false negative”





• We want: P(Type I error) ≈ 0 and P(Type II error) ≈ 0
How can we approach this? How well can we do?

• For a hypothesis test:
• We specify (control) the Type I error rate, i.e., limit the “false positive”

rate.
• After fixing Type I error rate, Type II error rate can often be reduced by

increasing the sample size (reduces variability)
• Type I error rate := significance level = size of test: usually

denoted by 𝛼 = 0.05:

So under H0, this test mistakenly rejects H0 5% of the time.
• Smaller 𝛼 → less chance of false positive result
• Common choices: 𝛼 = 0.05, 0.01, 0.001

P(Type I error) = P(reject H0 | H0 true) = 0.05 



• Type II error rate: Usually denoted by β. Then:

Tests with low power are basically useless. However, the
researcher can often increase power by increasing sample size.

P(Type II error) = P(fail to reject H0 | Ha true)

Power = 1 – P(Type II error) = P(reject H0 | Ha true)



Hypothesis Testing
• First Steps:

• Set type I error rate, 𝛼
• Ha (≠ or > or <) & H0 (= or ≤ or ≥)
• Determine sample size to control type II error rate
• Collect SRS

• Determine:
• Distribution of (standardized) test statistic under H0

• Using this distribution make a decision based on either:
• Rejection Region
• p-value

• Finish: check assumptions, draw conclusions



Hypotheses we will consider for 𝜇:
• Ha: 𝜇 > 𝜇# vs. 𝐻0: 𝜇 ≤ 𝜇#
• Ha: 𝜇 < 𝜇# vs. 𝐻0: 𝜇 ≥ 𝜇#
• Ha: 𝜇 ≠ 𝜇# vs. 𝐻0: 𝜇 = 𝜇#

• 𝐻𝑎 usually reflects what the researcher would like to know. 
Is something different going on than what has previously 
been assumed?
• Can use a rejection region or a p-value to make a decision
about whether something different is going on.

𝜇! = hypothesized mean used to 
calculate the test statistic for all three 
hypotheses – it is known quantity 



The Standardized Test Statistic
Assume 𝑋𝑖 , i = 1, .., n is a SRS from some population 
with mean, 𝜇, and variance 𝜎2 . Under 𝐻0 we will assume 
𝜇 = 𝜇#. Then:
• If 𝜎 is known, the following is the standardized test 
statistic under 𝐻0.

• If 𝜎 is unknown, the following is the standardized test 
statistic under 𝐻0.

(𝑋! − 𝜇"
𝜎/ 𝑛

(𝑋! − 𝜇"
𝑆/ 𝑛



Decision making using a rejection region (RR):
• RR = range of values of the standardized test statistic 
for which you will reject H0 if you realized standardized 
test statistic is in this range. For example:

• RR depends on
• Distribution of the standardized test statistic
• Type I error rate
• Ha (Will you reject if $̅!%&"'/ ! is big? Small? Big in absolute 

value?)

𝑥̅! − 𝜇"
𝜎/ 𝑛

> 1.96 𝑖𝑠 𝑜𝑛𝑒 𝑝𝑜𝑠𝑠𝑖𝑙𝑒 𝑅𝑅



Basic principle in choosing rejection region:
• If Ha: 𝜇 > 𝜇" is true, then deviations of (𝑋! from 𝜇" in the positive 

direction (i.e., (𝑋! > 𝜇" ) should be considered as evidence against 
H0.

• If Ha: 𝜇 < 𝜇" is true, then deviations of (𝑋! from 𝜇" in the negative 
direction (i.e., (𝑋! < 𝜇" ) should be considered as evidence against 
H0.

• If Ha: 𝜇 ≠ 𝜇" is true, then deviations of (𝑋! in either direction away 
from 𝜇" are evidence against H0.

In each case: 𝛼 dictates how far (𝑋! must be from 𝜇 before we 
conclude that the data provide more support for Ha.



Rejection Region Approach: 𝜎 known

1. Specify H0, Ha, & 𝛼 = P(Type I error)
2. Compute Test Statistic (T.S.)
• Value depends on sample collected
• Obtain its sampling distribution under assumption 
that H0 is true.
3. Determine Rejection Region (R.R.)
• Specifies both the direction(s) and magnitude of 
deviations from the population mean that we 
regard as representing evidence against H0

4. Decision / Conclusion :
• If T.S. falls in R.R., then reject H0 in favor of Ha; 
otherwise, fail to reject the null hypothesis H0.
5. Check assumptions

Example: H0: 𝜇 ≤ 𝜇"
𝐻a:𝜇 > 𝜇"

T.S. Z∗ =
?X* − µ"
σ/ n

R.R. Z∗ > 𝑍+

For the two other forms of Ha, 
the relevant RRs are: 
(ii) Ha: 𝜇 < 𝜇# ↔ Z∗ < −𝑍%
(iii) Ha: 𝜇 ≠ 𝜇# ↔ |Z∗| > −𝑍%/'

This analysis assumes the standardized test statistic has a N(0,1) distribution.



Consider the test for
H0: 𝜇 ≤ 𝜇" vs. Ha: 𝜇 > 𝜇"
In this case, values of (𝑋! bigger
than 𝜇" are evidence against H0.

The realization of the standardized test 
statistic, 𝑍∗ = $̅!%&"

'/ ! , measures how 
many standard errors away the 
observed value lies from 𝜇0. For this 𝐻𝑎, 
anything greater than 2 is fairly good
evidence against 𝐻0. 2 is a little 
arbitrary; using 𝑧𝛼 limits the type 1 
error rate to be at most 𝛼.



Why does the RR given as 𝑍∗ > 𝑍+ limit 
the type I error rate to be at most 𝛼?

Suppose under H0:

𝑥̅! − 𝜇"
𝜎
𝑛

~̇𝑁(0,1)

Key idea: under repeated SRSs from 
a population with mean 𝜇" and SD 𝜎, 
we know the approximate sampling 
distribution of the standardized 
statistic. In particular, we have

𝑃(
𝑥̅! − 𝜇"

𝜎
𝑛

> 𝑍#) ̇= 𝛼

Suppose 𝛼 = 0.05


