

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 4: Hypothesis testing

Slides adapted from Cecilia Earls

Histograms

80

Boxplots

Scatterplots

Prestige by Education

Years of Education

Statistical hypothesis testing

Statistical hypotheses: Statements made about a specific value of a population parameter $(e.g.,\mu)$.

Hypothesis test: Statistical method for evaluating the degree to which evidence favors (or does not favor) the alternative hypothesis over the null hypothesis.

- **H₀:** null hypothesis ("nothing going on")
- **H_a:** alternative hypothesis ("something going on")

Tests for a population mean

Let μ_0 be a specific value of the population mean of direct interest, then we can test **one** of the following three sets of hypotheses:

H₀: $\mu = \mu_0$ vs. H_a: $\mu \neq \mu_0$ Two-sided tests H_0 : $\mu \leq \mu_0$ vs. H_a : $\mu > \mu_0$ H_0 : $\mu \ge \mu_0$ vs. H_a : $\mu < \mu_0$ One-sided tests

Goal: Create objective framework in which we can

- Make a decision about H₀ vs. H_a using data (e.g., $\overline{X_n}$)
- Evaluate whether the observed value of our statistic (e.g., $\overline{X_n}$) seems reasonable if H₀ is indeed true.

Idea: Use the known behavior of X_n **under SRS (Simple Random Sampling)**

- Construct sampling distribution of $\overline{X_n}$ under H₀ (e.g., with $\mu =$ μ_0). This gives us information on "likely" values of sample mean seen under SRS, assuming $\mu = \mu_0$.
- Use this distribution to evaluate how likely we would be to observe a value more extreme than that obtained from SRS, X_n , assuming $\mu = \mu_0$.

We know under certain conditions… X_i , $i = 1, ..., 100$, iid , $E(X_i) = \mu$; $SD(X_i) = 100$ \bar{X}_{100} ~ $N(\mu, 100^2/100)$

Assume! $\mu = 50$ Then: $\bar{X}_{100} \sim N(50, 100^2/100)$ under Ho

If H_0 is true, is $\bar{x}_{100} = 25$ a likely value? How do we make a formal decision about H_0 ?

Decision Rules, Type I & Type II Errors, and Rejection Regions

To structure the decision making process, we need:

- 1. A decision rule that allows us to decide whether the observed value of $\overline{X_n}$ should be judged consistent with H₀ (i.e., with $\mu = \mu_0$) or supportive of H_a over H₀.
- 2. A way to include the possibility of making an error in either direction, and to assess its impact.
- Data \rightarrow decision between: Reject H₀ or Do not reject H₀
- View Ho as the null situation "nothing is going on":

standard assumption is true

• View H_a as the opposite situation "something is going on"

standard assumption not true – usually the research hypothesis

- Two possible types of error: Type I & Type II
	- Type I error: Reject Ho when Ho is actually true "false positive"
	- Type II error: Do not reject Ho when Ho is actually false, that is, when Ha is true - "false negative"

- We want: P(Type I error) \approx 0 and P(Type II error) \approx 0 How can we approach this? How well can we do?
- For a hypothesis test:
	- We specify (control) the Type I error rate, i.e., limit the "false positive" rate.
	- After fixing Type I error rate, Type II error rate can often be reduced by increasing the sample size (reduces variability)
- Type I error rate := significance level = size of test: usually denoted by $\alpha = 0.05$:

 $P(Type I error) = P(reject Ho | Ho true) = 0.05$

So under Ho, this test mistakenly rejects Ho 5% of the time.

- Smaller $\alpha \rightarrow$ less chance of false positive result
- Common choices: $\alpha = 0.05, 0.01, 0.001$

• Type II error rate: Usually denoted by β . Then:

 $P(Type II error) = P(fail to reject Ho | Ha true)$

Power = $1 - P$ (Type II error) = P(reject H₀ | H_a true)

Tests with low power are basically useless. However, the researcher can often increase power by increasing sample size.

Hypothesis Testing

• First Steps:

- Set type I error rate, α
- Ha (\neq or $>$ or $<$) & H₀ (= or \leq or \geq)
- Determine sample size to control type II error rate
- Collect SRS

• Determine:

- Distribution of (standardized) test statistic under H0
- Using this distribution make a decision based on either:
	- Rejection Region
	- p-value
- Finish: check assumptions, draw conclusions

Hypotheses we will consider for :

- Ha: $\mu > \mu_0$ VS. Ho: $\mu \leq \mu_0$
- Ha: $\mu < \mu_0$ VS. Ho: $\mu \ge \mu_0$
- Ha: $\mu \neq \mu_0$ VS. Ho: $\mu = \mu_0$

 μ_0 = hypothesized mean used to calculate the test statistic for all three hypotheses – it is known quantity

- \cdot H_a usually reflects what the researcher would like to know. Is something different going on than what has previously been assumed?
- Can use a rejection region or a p-value to make a decision about whether something different is going on.

The Standardized Test Statistic

Assume X_i , $i = 1, ..., n$ is a SRS from some population with mean, μ , and variance σ^2 . Under H_0 we will assume $\mu = \mu_0$. Then:

• If σ is known, the following is the standardized test statistic under H_0 .

$$
\frac{\bar{X}_n - \mu_0}{\sigma / \sqrt{n}}
$$

• If σ is unknown, the following is the standardized test statistic under H_0 .

$$
\frac{\bar{X}_n - \mu_0}{S/\sqrt{n}}
$$

Decision making using a rejection region (RR):

 \cdot RR = range of values of the standardized test statistic for which you will reject H0 if you realized standardized test statistic is in this range. For example:

> $\bar{x}_n - \mu_0$ σ/\sqrt{n} > 1.96 is one possile RR

- RR depends on
	- Distribution of the standardized test statistic
	- Type I error rate
	- Ha (Will you reject if $\frac{\bar{x}_n \mu_0}{\sigma}$ $\frac{\sqrt{n}-\mu_0}{\sigma/\sqrt{n}}$ is big? Small? Big in absolute value?)

Basic principle in choosing rejection region:

- If Ha: $\mu > \mu_0$ is true, then deviations of \bar{X}_n from μ_0 in the positive direction (i.e., $\bar{X}_n > \mu_0$) should be considered as evidence against H0.
- If H_a: $\mu < \mu_0$ is true, then deviations of X_n from μ_0 in the negative direction (i.e., $\bar{X}_n < \mu_0$) should be considered as evidence against H0.
- If H_a: $\mu \neq \mu_0$ is true, then deviations of \bar{X}_n in either direction away from μ_0 are evidence against H₀.

In each case: α dictates how far \bar{X}_n must be from μ before we conclude that the data provide more support for Ha.

Rejection Region Approach: known

1. Specify H0, Ha, & α = P(Type I error) **2. Compute Test Statistic (T.S.)**

- Value depends on sample collected
- Obtain its sampling distribution under assumption that H0 is true.

3. Determine Rejection Region (R.R.)

• Specifies both the direction(s) and magnitude of deviations from the population mean that we regard as representing evidence against H0

4. Decision / Conclusion :

• If T.S. falls in R.R., then reject H0 in favor of Ha; otherwise, fail to reject the null hypothesis H0.

5. Check assumptions

Example: $H_0: \mu \leq \mu_0$

 H a: $\mu > \mu_0$

 $TS.$ $Z^* =$ $\overline{X}_n - \mu_0$ σ/\sqrt{n}

R.R. $Z^* > Z_{\alpha}$

For the two other forms of Ha, the relevant RRs are: (ii) Ha: $\mu < \mu_0 \leftrightarrow Z^* < -Z_\alpha$ (iii) Ha: $\mu \neq \mu_0 \leftrightarrow |Z^*| > -Z_{\alpha/2}$

This analysis assumes the standardized test statistic has a N(0,1) distribution.

Consider the test for H0: $\mu \leq \mu_0$ vs. Ha: $\mu > \mu_0$ In this case, values of \bar{X}_n bigger than μ_0 are evidence against H₀.

The realization of the standardized test statistic, $Z^* =$ $\bar{x}_n - \mu_0$ $\frac{\omega_n - \mu_0}{\sigma/\sqrt{n}}$, measures how many standard errors away the observed value lies from μ o. For this Ha , anything greater than 2 is fairly good evidence against H_0 . 2 is a little arbitrary; using z_{α} limits the type 1 error rate to be at most α .

Why does the RR given as $Z^* > Z_{\alpha}$ limit the type I error rate to be at most α ?

Suppose $\alpha = 0.05$

Key idea: under repeated SRSs from a population with mean μ_0 and SD σ , we know the approximate sampling distribution of the standardized statistic. In particular, we have

$$
P\left(\frac{\bar{x}_n - \mu_0}{\frac{\sigma}{\sqrt{n}}} > Z_\alpha\right) = \alpha
$$

