

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 5: t-tests

Slides adapted from Cecilia Earls

Inference for μ

Scenario: Often we would like to say SOMETHING about the mean of a population we are sampling from.

What do we have to work with?

- Take one SRS from this population
 - $X_i, i = 1, ..., n$ Basic Assumptions

$$E(X_i) = \mu, Var(X_i) = \sigma^2$$
 [might have more]

• From our sample, we get an outcome: \bar{x}_n (e.g., 17)

Often know the standardized sampling distribution of \overline{X}_n (at least approximately)

Hypothesis Testing

• First steps:

- Set type I error rate, $\alpha = P(\text{Reject } H_0 | H_0 \text{ is true})$
- H_a (\neq or > or <) & H_0 (= or \leq or \geq)
- Determine sample size to control β = P(Fail to reject H₀ | H_a is true)
- Collect SRS

• Determine:

- Distribution of standardized test statistic under Ho
- Using this distribution make a decision:
 - Reject Ho? or Fail to reject Ho?
 - Decision can be based on rejection region
 - Decision can be based on a *p*-value

Suppose under Ho:

$$\frac{\overline{X}_n - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$$

standardized standard test statistic normal distribution

Critical value: z_{α} (1 - α)100th percentile of N(0,1) In R: $z_{0.05}$ = qnorm(1–0.05)=1.645

p-value: $P(z_{\alpha}>z^*)$ In R: p = 1-pnorm(z^*)

two-sided test

Example

Reading comprehension in L1 and L2

Mean accuracy of L1: 0.85

	L2
Ν	46
Mean	0.8
SD	0.2

Are L2 speakers' accuracy lower than L1?

Are L2 speakers' accuracy different than L1?

t-distribution

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \text{ does not} \longrightarrow \frac{\overline{X}_n - \mu}{S/\sqrt{n}} \sim N(0,1)$$

Reason: There is extra variability introduced when we replace a fixed σ by a varying, <u>sample-dependent</u> s.

Sampling distribution of

$$\frac{\overline{X}_n - \mu_0}{S/\sqrt{n}} \sim t_{n-1}$$
degrees of freedom

How different is a t_{df} distribution from a N(0,1) distribution?

Hypothesis Testing: Normal Samples, σ Unknown

Example:

$$H_0: \mu \le \mu_0$$

 $H_a: \mu > \mu_0$

TT

 t^*

T.S.

$$=\frac{\overline{X}_n-\mu_0}{s/\sqrt{n}}$$

For the two other forms of H_a , the relevant *p*-values are:

$$H_a: \mu < \mu_0 \leftrightarrow p = P(t_{n-1} < t)$$

$$H_a: \mu \neq \mu_0 \leftrightarrow p = 2 P(t_{n-1} > |t^*|)$$

R.R.

$$t^{*} > t_{n-1,\alpha}$$

p-value $p = P(t_{n-1} > t^*)$

Example: Students quiz score

Average quiz score of 25 students:

25.8, 24.6, 26.1, 22.9, 25.1, 27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1, 24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 24.8, 22.9, 25.4.

• Questions: Based on this SRS, is the current mean different from that in 2022 (24.5)? (Testing)

Look at the data first...

> quizscore<-c(25.8, 24.6, 26.1, 22.9, 25.1, 27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1, 24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 2 4.8, 22.9, 25.4) > hist(quizscore,col=4,main="Student quiz score",xlab="score",cex.lab=1.5,

cex.main=1.5)

Student quiz score

Do these data look like they were sampled from a normal distribution?

25 might not be "large enough" to approximate the sampling distribution of $\frac{\bar{X}_n - \mu}{S/\sqrt{n}}$ by N(0,1)

Test: H_0 : $\mu = 24.5$ vs. H_a : $\mu \neq 24.5$

t.test() reports all output available for the test specified by the user

> t.test(quizscore,alternative="two.sided",mu=24.5)

```
One Sample t-test
                                         > 2*(1-pt(1.9675,24))
                                         [1] 0.06078647
data: quizscore
t = 1.9675, df = 24, p-value = 0.06079
alternative hypothesis: true mean is not equal to 24.5
95 percent confidence interval:
 24.47413 25.58187
sample estimates:
mean of x
   25.028
```

Inference for two samples

Difference in analysis: Form of the test statistic depends on whether the samples are independent or paired

two participant groups: hearing-impaired normal hearing

- Paired \rightarrow inference for the mean difference is identical to inference for μ
- Independent \rightarrow can we assume $\sigma_1 = \sigma_2$?
 - Equal variance assumption
 - Unequal variance assumption

Example: Cocktail party experiment

- Both hearing-impaired (N=49) and normal hearing participants (N=45) listened to mixed speech and single-talker speech in the fMRI scanner.
- Participants reported self-rated intelligibility score (on a 1-7 Likert scale) for each speech after the experiment
- Question 1: Is mixed speech more difficult to understand than single-talker speech for hearing-impaired and normal hearing listeners?
- Question 2: Are hearing-impaired listeners have more difficulty understanding mixed and single-talker speech than normal hearing listeners?

Sampling distributions for sums and differences of independent normal means

- Let \overline{X} be the sample mean from a SRS of size n_x from a $N(\mu_x, \sigma_x^2)$ population.
- Let \overline{Y} be the sample mean from a SRS of size n_y from a $N(\mu_y, \sigma_y^2)$ population.
- Assume that the two populations and the samples from them are independent. Then:

$$\bar{X} \pm \bar{Y} \sim N(\mu_x \pm \mu_y, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y})$$

Ho: $\mu_1 - \mu_2 \leq D_0 \text{ vs. } H_a$: $\mu_1 - \mu_2 > D_0$, reject Ho if $t^* > t_a$, df Ho: $\mu_1 - \mu_2 \geq D_0 \text{ vs. } H_a$: $\mu_1 - \mu_2 < D_0$, reject Ho if $t^* < -t_a$, df Ho: $\mu_1 - \mu_2 = D_0 \text{ vs. } H_a$: $\mu_1 - \mu_2 \neq D_0$, reject Ho if $|t^*| > t_a/2$, df

where:
$$T^* = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

 $df = \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2(n_1 - 1) + c^2(n_2 - 1)}$ for $c = \frac{s_1^2/n_1}{s_1^2/n_1 + s_2^2/n_2}$