

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

# Fundamentals of Statistics for Language Sciences LT2206



#### Jixing Li Lecture 6: ANOVA Slides adapted from Cecilia Earls



*p*-value: In R: *p* = 1-pt(*t*,n-1)

## **Example: Cocktail party experiment**



After listening, rate how clear the speech was from 1-5 1: not clear at all 5: very clear

#### **Participants:**

hearing-impaired adults (N=45): High-frequency hearing loss (> 8kz) normal hearing adults (N=49)

**Question 1:** Is mixed speech more difficult to understand than single-talker speech for hearing-impaired and normal hearing listeners?

**Question 2:** Are hearing-impaired listeners have more difficulty understanding mixed and single-talker speech than normal hearing listeners?

|                  | Q1: withi | n group | $t^* = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{(\bar{X}_1 - \bar{X}_2) - D_0}$ |
|------------------|-----------|---------|-----------------------------------------------------------------------------|
| group            | mixed     | single  | $S_1^2 + S_2^2$                                                             |
| hearing-impaired | M=3.44    | M=4.16  | $\sqrt{n_1 \cdot n_2}$                                                      |
| N=45             | SD=1.03   | SD=0.85 |                                                                             |
| normal           | M=3.94    | M=4.63  |                                                                             |
| N=49             | SD=0.99   | SD=0.64 |                                                                             |

Ho:  $\mu_1 - \mu_2 \leq D_0 \text{ vs. } H_a$ :  $\mu_1 - \mu_2 > D_0$ , reject Ho if  $t^* > t_a$ , df Ho:  $\mu_1 - \mu_2 \geq D_0 \text{ vs. } H_a$ :  $\mu_1 - \mu_2 < D_0$ , reject Ho if  $t^* < -t_a$ , df Ho:  $\mu_1 - \mu_2 = D_0 \text{ vs. } H_a$ :  $\mu_1 - \mu_2 \neq D_0$ , reject Ho if  $|t^*| > t_a/2$ , df

where: 
$$t^* = \frac{(\bar{X}_1 - \bar{X}_2) - D_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
  
 $df = \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2(n_1 - 1) + c^2(n_2 - 1)}$  for  $c = \frac{s_1^2/n_1}{s_1^2/n_1 + s_2^2/n_2}$ 

## More than two groups?

| group                | mixed   | single  |
|----------------------|---------|---------|
| hearing-impaired     | M=3.44  | M=4.16  |
| N=45                 | SD=1.03 | SD=0.85 |
| normal               | M=3.94  | M=4.63  |
| N=49                 | SD=0.99 | SD=0.64 |
| children (Age:10-15) | M=3.17  | M=4.06  |
| N=47                 | SD=0.92 | SD=0.84 |

pair-wise t-tests: children vs. normal vs. hearing-impaired, for both single and mixed speech  $\rightarrow$  6 t-tests

#### **BUT:**

**Type I error rate:** 0.05\*6 = 0.3, **30% chance of false positives! Bonferroni correction:** set  $\alpha = 0.05 / 6 = 0.005$ 

number of tests

#### **Better way: ANalysis Of VAriance (ANOVA)**

**Idea:** ANOVA compares the variability between the groupspecific means to a pooled estimate of "within group" variability, obtained using all observations in all groups.



#### **One-way ANOVA**



#### **Perform a one-way ANOVA**

**1.** Compute sum of squares between group (SSB):

2. Compute sum of squares within group / error (SSE): sum of the squared differences between each individual observation and the group mean of that observation.

 $\sum n_k (\overline{X_k} - \overline{X})^2$ 

3. Compute sum of squares total (SST): SSB+SSE



### The ANOVA table

| Source of variation | Degrees of<br>freedom | Sum of squares | Mean<br>squares                  | F statistic |
|---------------------|-----------------------|----------------|----------------------------------|-------------|
| Between             | k-1                   | SSB            | MSB<br>=SSB/(k-1)                | MSB/MSE     |
| Within<br>(Error)   | n-k                   | SSE            | MSE<br>= <mark>SSE</mark> /(n-k) |             |
| Total               | n-1                   | SST            |                                  |             |

*k*: number of groups*n*: total number of samples

Under  $H_0$ , F should tend to be close to 1. Under  $H_a$ , F should exceed 1, by an amount depending on both n and k.

#### **F-distribution**



### **Example: The cocktail party experiment**

| group            | mixed | mean | grand mean |  |
|------------------|-------|------|------------|--|
| hearing-impaired | 2,2,3 | 2.33 |            |  |
| normal           | 2,4,4 | 3.33 | 2.78       |  |
| children         | 2,3,3 | 2.67 |            |  |

**SSB** = 
$$3*(2.33-2.78)^2 + 3*(3.33-2.78)^2 + 3*(2.67-2.78)^2 = 0.52$$
  
**SSE** =  $(2-2.33)^2 + (2-2.33)^2 + (3-2.33)^2 + (2-3.33)^2 + (4-3.33)^2 + (4-3.33)^2 + (2-2.67)^2 + (3-2.67)^2 + (3-2.67)^2 = 4$   
**k** = 3, **n** = 9  
**MSB**= **SSB** / (k-1) =  $0.52/2 = 0.26$   
**MSE** = **SSE** / (n-k) =  $0.67$   
**F** = **MSB/MSE** = 0.39

### **ANOVA in R**

> cocktail\_lm = lm(mix~group, data=cocktail)
> anova(cocktail\_lm)
Analysis of Variance Table