

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Fundamentals of Statistics for Language Sciences LT2206

Jixing Li Lecture 7: ANOVA II

Example: Cocktail party experiment

After listening, rate how clear the speech was from 1-5 1: not clear at all 5: very clear

Participants:

hearing-impaired adults (N=45): High-frequency hearing loss (> 8kz) normal hearing adults (N=49) children (N=47)

One-way ANOVA

1. Compute sum of squares between group (SSB):

2. Compute sum of squares within group / error (SSE): sum of the squared differences between each individual observation and the group mean of that observation.

 $\sum n_k (\overline{X_k} - \overline{X})^2$

3. Compute sum of squares total (SST): SSB+SSE

The ANOVA table

Source of variation	Degrees of freedom	Sum of squares	Mean squares	F statistic
Between	k-1	SSB	MSB =SSB/(k-1)	MSB/MSE
Within (Error)	n-k	SSE	MSE = <mark>SSE</mark> /(n-k)	
Total	n-1	SST		

k: number of groups*n*: total number of samples

Under H_0 , F should tend to be close to 1. Under H_a , F should exceed 1, by an amount depending on both n and k.

Example: The cocktail party experiment

group	mixed	mean	grand mean	
hearing-impaired	2,2,3	2.33		
normal	2,4,4	3.33	2.78	
children	2,3,3	2.67		

SSB =
$$3*(2.33-2.78)^2 + 3*(3.33-2.78)^2 + 3*(2.67-2.78)^2 = 2.77$$

SSE = $(2-2.33)^2 + (2-2.33)^2 + (3-2.33)^2 + (2-3.33)^2 + (4-3.33)^2 + (4-3.33)^2 + (2-2.67)^2 + (3-2.67)^2 = 4$
k = 3, **n** = 9
MSB= **SSB** / (k-1) = $2.77/2 = 1.385$
MSE = **SSE** / (n-k) = 0.67
F = **MSB/MSE** = 2.07

F-distribution

Two-way ANOVA (factorial design)

Use two-way ANOVA when you have more than one categorical variables

2 factors				
hearing ability	speech type			
	mixed	single		
hearing-impaired	2,2,3	3,2,2		
normal	2,4,4	4,5,4		

Whether speech type or hearing ability or both affect the intelligibility score?

Main and interaction effects

main effect of hearing ability, interaction effects

hearing ability	speech type	
	mixed	single
hearing-impaired	2,2,3	3,2,2
normal	2,4,4	5,4,5

1. Compute **sum of squares 1**st **factor** (group mean – grand mean)² * n

hearing ability: $(2.3-3.2)^{2*6} + (4-3.2)^{2*6} = 8.7$

mean table

hearing ability	speech type		mean	
	mixed	single		
hearing-impaired	2,2,3	3,2,2	2.3	
normal	2,4,4	5,4,5	4	
mean	2.8	3.5	3.2 —	\rightarrow grand

2. Compute sum of squares 2nd factor (group mean – grand mean)² * n

speech type: $(2.8-3.2)^{2*6} + (3.5-3.2)^{2*6} = 1.5$

mean table

hearing ability	speech type		mean	
	mixed	single		
hearing-impaired	2,2,3	3,2,2	2.3	
normal	2,4,4	5,4,5	4	
mean	2.8	3.5	3.2 —	→ grand

3. Compute sum of squares within (error)

 $(2-2.33)^2 + (2-2.33)^2 + (3-2.33)^2 + (3-2.33)^2 + (2-2.33)^2 + (2-2.33)^2 + (2-2.33)^2 + (2-3.33)^2 + (4-3.33)^2 + (4-2.33)^2 + (5-4.67)^2 + (4-4.67)^2 + (5-4.67)^2 = 4.67$

hearing ability	speec	mean	
	mixed	single	
hearing-impaired	2,2,3 (M=2.33)	3,2,2 (M=2.33)	2.3
normal	2,4,4 (M=3.33)	5,4,5 (M=4.67)	4
mean	2.8	3.5	3.2

4. Compute **sum of squares total**

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = 15.67$$

mean table

hearing ability	speech type		mean
	mixed	single	
hearing-impaired	2,2,3	3,2,2	2.3
normal	2,4,4	5,4,5	4
mean	2.8	3.5	3.2

5. Compute **sum of squares both factors**

SSTotal = SS1Factor + SS2Factor + SSBothFactor + SSError

SSBothFactor = SSTotal-SS1Factor-SS2Factor-SSError = 15.67 - 8.7 - 1.5 - 4.67= 0.8

Calculate *F* **score**

Source of variation	Degrees of freedom	Sum of squares	Mean squares	F statistic
1 st Factor	$k_1 - 1 = 1$	8.7	8.7/1	8.7/0.58
2 nd Factor	$k_2 - 1 = 1$	1.5	1.5/1	1.5/0.58
Both Factor	$k_1 * k_2 = 1$	0.8	0.8/1	0.8/0.58
Within	$n-k_1-k_2 = 8$	4.67	4.67/8=0.58	
Total	n-1 = 11	15.67		

Example: Semantic composition vs. association

