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Chapter 0 Introduction

ABSTRACT. These notes will introduce formal grammars and parsing methods for human languages, beginning with
syntax, then considering how the parsing models should extend to include, or at least interface with, phonology on
one side and reasoning on the other. Finally, time permitting, some recent methods for learning grammars will be
explored.

e The notes begin with a survey of basic methods of left-to-right phrase structure (context free, CF) parsing.
There is a large space of possibilities, and it is easy to show
o they vary greatly in time/space requirements,
o they vary in their suitability for plausible models of incremental interpretation, and
o they set the stage for parsing languages that are not CF definable.

Here and throughout these notes, the discussions will be mainly informal, aiming for an intuitive understanding
of the options. Though the basics in this first section of the notes were discovered mainly in the 1960’s and
1970’s, they are still not widely known.

e CF parsing methods can be extended to minimalist grammars (MGs), representatives of the class that Joshi’85
calls ‘mildly context sensitive’ (MCS), with attention to

o how MGs capture linguistic regularities that CFGs miss,
and hence can be much more succinct,

o how MGs capture a wide range of Chomskian analyses, but are very similar to tree adjoining grammars
and certain phrase structure grammars,

o their plausibility in models for human incremental interpretation, and
o setting the stage for parsing languages that are not MCS.

e The MG parsers will then be extended to (non-MCS) minimalist grammars with copying (MGCs), with attention
to

o how these grammars capture regularities MGs miss (namely: copying, sharing!),
o their plausibility in models of incremental interpretation.
e Some preliminary attention will then be given to
(under syntax) extending MGCs to (or at least towards) phonology/orthography,
(above syntax) using MGC analyses in reasoning and discourse,

(around syntax) how phonetics and reasoning about discourse — factors outside of syntax — can incrementally
guide the selection among parsing options.

e Finally, we explore how MGCs could be learned from examples and teachers.

So our goals are scientific, very far short of a whole understanding but implementable as far as they go. Science
enables the engineers; engineers are the game-changers.

ACKNOWLEDGEMENTS. The material in these notes has been incubating for a very long time. A project like this is a team
effort with more participants than most readers would ever imagine. This would not have been possible without help from Ed
Keenan, Marcus Kracht, Jens Michaelis, Greg Kobele, Thomas Graf, Hilda Koopman, Dominique Sportiche, Aravind Joshi,
Bob Berwick, Jerry Fodor, Mike Harnish, Kristine Yu, the students in my classes, and so many others — many of whom do
not approve! Certainly, many errors and important omissions remain here, and should be blamed only on me.
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CHAPTER 0. INTRODUCTION

Language, logic, algorithms, computation
Let’s define a logic as something with these three parts:

i. a language (a set of expressions) that has
ii. a “derives” relation I~ defined for it (a syntactic relation on expressions), and
iii. a semantics: expressions of the language have meanings.

e The meaning of an expression is usually specified with a “model” that determines a semantic valuation
function that is often written with double brackets:
[socrates_is_mortal] = True

e Once the meanings are given, we can usually define an “entails” relation |, so that for any set of
expressions I' and any expression A, I' = A means that every model that makes all sentences in T’
true also makes A true.

So a logic has three parts: it’s (i) a language, with (ii) a derives relation I, and with (iii) meanings.
We expect the derives relation - should correspond to the |= relation in some way. The logic is sound iff

from axioms I' the derivable results are all entailed by I'. The logic is complete iff everything entailed by
I is derivable.

We propose, following Montague and many others to study human language from this perspective:
Each human language is a logic.

This perspective carves up various aspects of language in a useful way for our computational approach.
We also propose:

e Programming languages are naturally represented as logics.

The programs have a syntax, and a meaning, and each program defines an inference relation, a mapping
from input to output (the mapping may be partial, since a program can fail to terminate on some
inputs).

e Systems that can recognize expressions as grammatical or not are also naturally represented as logics.

A grammar is the language of a ‘recognizer’, the grammar semantically denotes a certain language,
and the grammar defines an inference relation between recognizer steps. The recognizer is sound iff it
accepts only strings in the language that the grammar denotes, and it is complete iff it accepts every
string in the language that the grammar denotes.

A ‘parser’ is a recognizer that returns some kind of structural description of any sequences that are
accepted.

Computer science was born in logic. Computations generally can be regarded as sequences that have
certain properties: the steps in the sequence are syntactically defined () but they are typically semantically
meaningful ().

A physical system realizes/implements a computation iff the causal relations among interpreted states match
the defined relations among the interpreted syntactic objectsEl

An algorithm is a ‘recipe’ that specifies the steps in a computation, steps that stand in a similar ‘derivational’
relation.

Turing argues that every ‘mechanical calculation’ can be carried out by a very simple kind of device, a Turing
machine. Remarkably, it turned out that these calculations also correspond to the evaluations of Church’s
‘recursive’ functions. And many other kinds of devices turned out to be capable of defining exactly the
same computations: 2-register machines [9], an infinite abacus with finite recipes [7] ‘general purpose analog
machines’ [12], and many other things. Moschovakis has a concise technical presentation the Church-Turing
thesis in his lecture notes [I1].

We will use the programming language python (version 2) to implement our recognizers and parsers. Dis-
cussions of implementation will be more prominent at the beginning, where we are getting started, than at
the end, where we will be expert enough to understand the code without as much explicit discussion.

IThe question of when two computations should be regarded as the same, or one as a compiled version of another, is a delicate one
[10, d]. Optimizing compilers confuse the situation even further.
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Figure 1: Gregor Reisch (1508): The new versus the old arithmetic algorithms: Boéthius against Pythagoras,
Hindu-Arabic numerals versus the counting board. Theories of sequences are mutually interpretable with theories
of number [I4] T5] 2], and in computational linguistics too, the choice of representation is key.

http://daten.digitale-sammlungen.de/~db/0001/bsb00012215 /image 1
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0.2 The object of study: human language

Human languages have many surprising properties. Some of these may be due to historical accidents, but the kinds
of patterns which seem fairly common and stable across human languages must be due to peculiarities of the way
we learn and compute grammatical structure. This is something that (almost) everyone begins to notice when they
study linguistics. I like to keep in mind a few of these surprising things — what the linguist Peter Culicover calls
‘syntactic nuts’ [4]:

e In natural tense logics, there are operators that can be prefixed to sentences

Fp at some time in the future(p)
Pp at some time in the past(p)

But in human languages like English, the expression of temporal relations is most often marked on a verb or
modal or auxiliary, and the way this interacts with agreement, negation, contraction, ellipsis and other aspects
of structure is not simple

*Is not Abrams hiring Brown? Isn’t Abrams hiring Brown?
* Abrams has had hired Brown? * Don’t anyone be trustworthy?

Could Abrams not have hired Brown? Could Abrams have not hired Brown?
* Abrams does merely not work

I could not understand that I couldn’t understand that

But I am not surprised * But I amn’t surprised

Had he hired me, I would be happy * Hadn’t he hired me, I would be happy
Abrams need not hire Brown * Abrams need hire Brown

Our most common verbs and auxiliaries are most irregular, and in many other languages, things are worse.

e It is perhaps not surprising that material that is in some sense predictable can be left out in human languages,
but the details are very tricky!

Joe was murdered by someone, but we don’t know who
Joe was murdered by someone, but we don’t know by who
Joe was murdered, but we don’t know by who

* Joe was murdered, but we don’t know who

He proved something, but I don’t know what
He was evaluating a proof, but I don’t know of what
* He was evaluating a proof, but I don’t know what

e English has a range of slightly idiomatic copying constructions [§]:

(X-or-no-X) Linguistics or no linguistics, let’s party  (X-shmX) Linguistics shminguistics
(X-is-a-X-is-a-X) A dog is a dog is a dog (X or X?) Is she beautiful or is she beautiful?

These sound odd when the two X’s are not exact copies, except (at least for some speakers) for certain expletive
insertions [13]:

e Linguistics test or no damn linguistics test, I am going home

e Long linguistics test or no long bloody linguistics test, I am going home

Many other languages have reduplication that is much more central in their grammars. More on this later!

0.3 Introducing python

0.3.1 Printing, arithmetic, strings, variables, and other basics

>>> print ’hello world’
hello world

>>> 2%3

6

>>> 2/3

0

2Many of these examples from [5].
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>>> 2./3.

0.6666666666666666

>>> x?

)X)

>>> Ixl4+2y?

7Xy)

>>> wtw

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ’w’ is not defined

Since we use = for assignment, we use == for equality.

>>> 3 = 2+1
File "<stdin>", line 1
SyntaxError: can’t assign to literal

>>> 3 == 2+1
True

>>> 2 >= 1
True

>>> 2 >= 2
True

>>> 2 >= 3
False

0.3.2 Importing modules

Suppose we create this file

mmnn

file: testl.py

mnn

# I include just this one assignment
ncex = [’colorless’,’green’,’ideas’,’sleep’, ’furiously’]

Then:
>>> from testl import *
>>> ncex
[’colorless’, ’green’, ’ideas’, ’sleep’, ’furiously’]
Alternatively:

>>> import testl
>>> ncex
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name ’ncex’ is not defined
>>> testl.ncex
[’colorless’, ’green’, ’ideas’, ’sleep’, ’furiously’]

0.3.3 Recursion, loops, defining functions

Euclid’s algorithm for finding the greatest common divisor of two integers is among the oldest explicitly given.
Recalling that a mod b is the remainder of a divided by b, it is given this way in a modern book of algorithms [3]
§31.2]:

EucLip(a, b)

1 ifb==

2 return a

3 else

4 return EucLID(b,a mod b)

For example, we can calculate the greatest common divisor of 12 and 18:
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calculation

EucLip(12,18), that is, a=12 and b=18
since b#£0, we calculate. . .
EucLip(18,12 MoDp 18)=EucLID(18,12), that is, a=18 and b=12
since b#£0, we calculate. . .
EvucLip(12,18 MoD 12)=EucLID(12,6), that is, a=12 and b=6
since b0, we calculate. . .
EucLip(6,12 MoD 6)=EUcLID(6,0), that is, a=6 and b=0
so we return 6

CHAPTER 0. INTRODUCTION

This formulation of Euclid’s algorithm is recursive in the sense that it calls itself, but we can get the same effect

with a loop (and loops are generally more efficient in python than recursion is):

For example, let’s see how the previous calculation looks, now done with loops:

)
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@)

e}
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EucLip(a, b)
1 whileb #0

2 r=amodb
3 a—>b
4 b=r

5 return a

calculation

EucLiD(12,18), that is, a=12 and b=18

since b#£0, we enter the loop and calculate. . .

r—12 mod 18=12
a=18
b=12

since b0, we enter the loop and calculate. ..

r—18 mod 12—6
a—12
b=06

since b=#0, we enter the loop and calculate. ..

r=12 mod 6=0

a=6

b=0

since b#£0, we exit the loop and return 6

We can write this algorithm in python quite directly (using % for mod):

" Euclid’s algorithm

mmn

def euclid(a, b):
while b != 0:

r=ab%b

a=>

b=r
return a

Now python will do the work for us:

>>> from test2 import *
>>> euclid(12,18)

6

>>> euclid(21,9)

3

>>>

0.3.4 Lists and more loops

There are many ways to represent sequences of elements, but we will begin with python’s lists [1,2,3]. (They are
actually what computer scientists usually call ‘arrays’.) To apply a function to every element of a list, it is common

to use a for-loop:
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" lists, for-loops
nmnn
def unordList(1):
for e in 1:
print e

def enumList(1):
for (i,e) in enumerate(l):
print i,e

def spacedList(1l):
for e in 1:
print e,
print

Then:

>>> from test3 import *
>>> unordList ([2,5,7])
2

5

7

>>> spacedList([2,5,7])
257

We can efliciently get any element out of a python list by its integer position, counting from 0:

>>> x=[2,3,5]

>>> x[0]

2

>>> x[1]

3

>>> x[3]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

We can also count from the right, with ‘negative’ positions:
>>> x[-1]

5

>>> x[-2]

3

And we can take out a subsequence (a ‘slice’):

>>> x[0:1]
[2]

>>> x[0:2]
[2, 3]
>>> x[1:]
[3, 5]
>>> x[:2]
[2, 3]

The + operator appends two lists:

>>> x=[2,3,5]
>>> y=[9,10]
>>> x+y

[2, 3, 5, 9, 10]

That calculation does not change either x or y, but we can also extend list x with y:
>>> x.extend(y)

>>> x
(2, 3, 5, 9, 10]

The empty sequence often written e (or sometimes A) in math books is of course [] in python.
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Simple syntax: Context free phrase
structure






Chapter 1

Top-down CF recognition

After introducing various substitution tests as structural probes, Fromkin’s [3, p.175] introduction to linguistics

builds a grammar like this{]

a — a Coord o

basic rules for rules for
selected elements modifiers
(137) S — DP VP
(D) NP
(124a) DP — ¢ Name
Pronoun
(123) NP - N (PP)
PP
(130) VP — V (DP) ({ CP »)
VP
(120) PP — P (DP)
(122) AP - A (PP)
(138) CP—-C S
AdvP — Adv
(73c.iii) NP — AP NP
NP — NP PP
NP —- NP CP

VP — AdvP VP

VP — VP PP

AP — AdvP AP

(for a=D,V,N,A,P,C,Adv,VP,NP,DP,AP,PP,AdvP,S,CP)

The numbering in parentheses comes from the Fromkin text. Recall that parentheses in the rules indicate optionality
and braces mean ‘choose exactly one’. The lexical items are given in a different format, but the same format could

be used:
the gentle student laughs
a clear teacher cries happily
D some hone.st . .c1ty. praises Adv — 4 sadly
every compassionate university criticizes impartially
one brave beer says generously
two kind wine knows
Jc?sé she wi?h that and
Name — . Pronoun — it P — C— € Coord — ¢ or
Maria by
. her whether but
Presidents Day him to
Tuesday from

This grammar defines an infinite set of derivations like these:

LA grammar like this is a standard first step in linguistics texts. We find similar grammars in [4] pp.33-4] and [6 p.189-192] and |2}

p.94] and [7), p.124].

11
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S

) —
S 5 wp VP PP
5P WP e NP PP v bp £ bp
N‘ame {/ lkl ﬂP praises I{\NP o‘n 1\‘Iame

\ | \ \ \ \

Sue laughs student from ]{\NP the & Tuesday
the & beer
university

This is a context free grammar (CFG) since on the left side of each rule we have just a category, which can
‘expand to’ (or ‘be built up from’) any of the sequences on the right side of the rules in the grammar. This particular
grammar has many defects, besides just being radically incomplete:

e There are many regularities in English that this grammar does not enforce, like subject-verb agreement, case
requirements on pronouns, etc.

e There are regularities in the grammar which appear non-accidental: e.g. that VPs have Vs in them, PPs have
Ps in them. That is, the fundamental properties of phrases often seem to be (largely) determined by one of
their elements, the ‘head’.

Nevertheless, this grammar is a good starting point for us. We will get to better grammars later.
If a derivation roughly like the one shown above is computed when you hear that sentence in ordinary fluent
speech, how could that happen?

Q. What algorithms can map orthographic or phonetic representations of sentences to their structures?

This is a first, rough indication of the main question for the class. We will see that the question is not stated
precisely enough, and will formulate it more carefully on page B9 in §2, below.

1.1 Top-down backtrack CF recognition

The way we recognize a sentence as grammatical, as one that is allowed by the grammar, is to find a derivation of
the sentence. This step, recognition is often separated from the formulation of a structural representation which is
called parsing. A parser is usually just a recognizer that keeps a record of the steps used in the successful derivation,
but still it is useful to think just about the recognizer first.

So the recognition problem is: given a grammar and a string of words, return True if the string has a derivation
and False otherwise.

One way to proceed is to begin with the sentence category S (or whatever it is) and rewrite the leftmost elements
until we get to a word, at which point we can check that word against the input, and so on. So, given the grammar
and sentence derived above, we begin, step 0, by predicting S, and then expand the S as our first step:

step predicted input
0. S Sue laughs
1. DP VP Sue laughs

At this point we get stuck, though, since there are several ways to expand the DP. A simple strategy for handling
this problem — the standard top-down, backtracking strategy — is to take all of the next steps, put them in a list,
and then work on one of the possibilities. If that possibility does not work out, then we will try one of the other
possibilities. So for the next step we actually take 5 steps (listed here in the order they appear in the grammar
above):

step  predicted input

0. S Sue laughs
1. DP VP Sue laughs
2a. D NP VP Sue laughs
2b. NP VP Sue laughs
2c. Name VP Sue laughs
2d. Pronoun VP Sue laughs

2e. DP Coord DP VP  Sue laughs
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At this point, we choose one of 2a-2e, for example the first one 2a, and expand the leftmost category, and again we

have choices:

step  predicted

0. S

1. DP VP

2a. D NP VP

2b. NP VP

2c. Name VP

2d. Pronoun VP

2e. DP Coord DP VP

3aa. D Coord D NP VP
3ab. the NP VP

3ac. a NP VP

3ad. some NP VP

3ae. every NP VP

3af. one NP VP

3ag. two NP VP

Now we could expand 3aa in all possible ways:

step
0.
1.
2a.
2b.
2c.
2d.
2e.
3aa.
3ab.
3ac.
3ad.
3ae.
3af.
3ag.

4aaa.
4aab.
4aab.
4aab.
4aab.
4aab.
4aab.

predicted

S

DP VP

D NP VP

NP VP

Name VP
Pronoun VP

DP Coord DP VP
D Coord D NP VP
the NP VP

a NP VP

some NP VP
every NP VP

one NP VP

two NP VP

input

Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs

input

Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs

D Coord D Coord D NP VP  Sue laughs

the Coord D NP VP
a Coord D NP VP
some Coord D NP VP
every Coord D NP VP
one Coord D NP VP
two Coord D NP VP

Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs

Now it is clear we are in trouble. .. this procedure will never terminate!
The problem here is a famous one: it comes from ‘left recursion’ through the category D. Let’s say that a
category X is recursive iff in one or more steps we can derive something else containing X (we use the superscript

+ to indicate one or more steps :>)E

(recursion) X =71 .

X

We call this kind of recursion left recursion iff the category X can contain another category X as its first element

(equivalently, on a leftmost branch):

Similarly for right recursion:

(left recursion) X =71 X...

right recursion) X =71 ...X
(rig

In the grammar above, we see for example that

2This terminology is standard in this kind of context [I, p.153], but there are other important senses of ‘recursive’. A function

definition that calls itself is recursive. And a language (a set of strings) is often said to be recursive iff it is Turing decidable [5] [§].
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Coord is not recursive
D is both left and right recursive because of coordination
NP is left recursive in coordination and in PP modification

Left recursion is a tricky problem, so for the moment, let’s just remove all left recursion from the grammar, as

follows:

basic rules for rules for
selected elements modifiers
(137) S — DP VP
(D) NP
(124a) DP — ¢ Name
Pronoun
(123) NP - N (PP)
PP
(130) VP — V (DP) (¢ CP ;)
VP
(120) PP — P (DP)
(122) AP - A (PP)
(138) CP—-C S
AdvP — Adv
(73c.iii) NP — AP NP
NP—NPPP
NP—NP-CP
VP — AdvP VP
YP— VP PP
AP — AdvP AP
a—a-GCeord« (for a=D,V,N,A P,C,Adv,VP,NP,DP,AP,PP,AdvP,S,CP)

So let’s remove the left recursion from the example we started and continue from step 3 which now looks like

this:

At this point the first symbol in step 3aa begins with a word,

away:

step
0.

1.
2a.
2b.
2c.
2d.
3aa.
3ab.
3ac.
3ad.
ae.
3af.

step
0.

1.
2a.
2b.
2c.
2d.
3aa.
3ab.
3ac.
3ad.
ae.
3af.

predicted input

S Sue laughs
DP VP Sue laughs
D NP VP Sue laughs
NP VP Sue laughs
Name VP Sue laughs
Pronoun VP Sue laughs
the NP VP Sue laughs
a NP VP Sue laughs
some NP VP  Sue laughs
every NP VP  Sue laughs
one NP VP Sue laughs
two NP VP Sue laughs

but it does not match the input, so we throw 4aaa

predicted input

S Sue laughs
DP VP Sue laughs
D NP VP Sue laughs
NP VP Sue laughs
Name VP Sue laughs
Pronoun VP Sue laughs
the NP VP Sue laughs
a NP VP Sue laughs
some NP VP  Sue laughs
every NP VP  Sue laughs
one NP VP Sue laughs
two NP VP Sue laughs
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3ab is no good either, nor are any of our attempts at step 3, so we throw them all away and try to proceed from 2b:

input

step  predicted
0. S

1. DP VP
2a. D NP VP
2b. NP VP

2c. Name VP
2d. Pronoun VP
3ba. N VP

3bb. N PP VP

Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs

Clearly neither of these will work either, and so skipping some steps, we get to the point where we consider steps

from 2c:

step  predicted

0. S

1. DP VP
2a. D NP VP
2b. NP VP

2c. Name VP
2d. Pronoun VP

3ca. Bill VP
3cb.  Sue VP
3cc.  José VP

3cd. Maria VP

input

Su?aughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs

3ce. Presidents Day VP  Sue laughs

3cf.  Tuesday VP

Sue laughs

3ca is thrown out, but 3cc give us a match against our input. When we scan an element from the input (indicated

by the prime mark), let’s indicate the successful analysis in the input by crossing out the scanned element:

Continuing:

step  predicted

0. S

1. DP VP
2a. D NP VP
2b. NP VP

2c. Name VP

2d. Pronoun VP

3cb.  Sue VP

3cc.  José VP

3cd. Maria VP

3ce. Presidents Day VP
3cf.  Tuesday VP

4cb’ VP

input

Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Sue laughs
Swe laughs
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step predicted input

0. S maughs
1. DP VP Sue laughs
2a. D NP VP Sue laughs
2b. NP VP Sue laughs
2c. Name VP Sue laughs
2d. Pronoun VP Sue laughs
3cb. Sue VP Sue laughs
3cc. José VP Sue laughs
3cd. Maria VP Sue laughs
3ce. Presidents Day VP Sue laughs
3cf. Tuesday VP Sue laughs
4cb’ VP S#e laughs
4cb’a 'V Swe laughs
4cb’b  V DP Swe laughs
4cb’c  V PP S#e laughs
4cb’d V CP Swe laughs
4cb’e V VP Swe laughs
4cb’f  V DP PP Swe laughs
4cb’g  V DP CP Swe laughs
4cb’h  V DP VP Swe laughs

Taking 4cb’a first, we expand:

step predicted input

0. S Sue laughs
1. DP VP Sue laughs
2a. D NP VP Sue laughs
2b. NP VP Sue laughs
2c. Name VP Sue laughs
2d. Pronoun VP Sue laughs
3cb. Sue VP Sue laughs
3cc. José VP Sue laughs
3ce. Presidents Day VP Sue laughs
3ce. Monday VP Sue laughs
3cf. Tuesday VP Sue laughs
4ch’ VP Swe laughs
4cb’a \Y% Swe laughs
4cb’b V DP Swe laughs
4cb’c V PP Swe laughs
4cb’d V CP Swe laughs
4cb’e V VP Swe laughs
4cb’f V DP PP Swe laughs
4cb’g V DP CP Swe laughs
4cb’h V DP VP Swe laughs
4cb’aa  laughs Swe laughs
4cb’aa  cries Swe laughs
4cb’aa  praises Swe laughs
4cb’aa  criticizes Swe laughs
4cb’aa  says Swe laughs
4cb’aa knows Swe laughs

Now when we check 4cb’aa against the input, we fulfill the last prediction and also consume the last input symbol,
which means we have found a derivation:
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step predicted input

0. S maughs
1. DP VP Sue laughs
2a. D NP VP Sue laughs
2b. NP VP Sue laughs
2c. Name VP Sue laughs
2d. Pronoun VP Sue laughs
3ch. Sue VP Sue laughs
3cc. José VP Sue laughs
3cd. Maria VP Sue laughs
3ce. Presidents Day VP Sue laughs
3cf. Tuesday VP Sue laughs
4cb’ VP Se laughs
4cb’a \Y Swe laughs
4cb’b V DP Swe laughs
4cb’c V PP S#e laughs
4cb’d VvV CP Swe laughs
4cb’e VvV VP Swe laughs
4cb’f V DP PP Swe laughs
4cb’g V DP CP Swe laughs
4cb’h V DP VP Swe laughs
4cb’aa  laughs Se laughs
4cb’aa  cries Swe laughs
4cb’aa  praises Swe laughs
4cb’aa  criticizes S+e laughs
4cb’aa  says Swe laughs
4cb’aa knows Swe laughs
4cb’aa’ € Stwetoughs

Success!

Even with this simple example, the procedure is tedious, so it is impractical to use reasonably sized grammars
without a calculator. But first, let’s describe more carefully what we did. The usual ‘pseudocode’ description is
this something like this. First each analysis (each line in our calculation above) contains a sequence of predicted
categories together with the remaining input — two lists. And the whole sequence of lines in our calculation is then
a list of pairs of lists — the so-called ‘backtrack stack’. There are just two basic parsing steps. The first one is called
expand (which as we will say later means ‘reduce complete’):

input, Xa .
(expand) ———— if X =
input, Sa

That is, when the predicted sequence begins with a predicted category X and we have a rule that says X rewrites

as (3, we can predict 8 followed by whatever else follows the X, leaving the input unchanged. The second rule is
scan (which as we will say later means ‘shift complete’):

w input, wa
(scan) ——
mput, «
That is, when the predicted sequence begins with a word w and the input also begins with w, we can delete both
of them (sometimes indicated informally by crossing them out). When either of these steps applies to « to produce
B we write o =4 0.
The following pseudocode uses the variable names chosen to be helpful:

ds for the (typically incomplete) ‘derivations’; ds is the ‘backtrack stack’
cs for the sequence of predicted categories in each derivation; cs is the ‘stack’
i for the remaining words of the input

Given a list of elements 1=[3,5,7], the rightmost (or sometimes leftmost) element is called the top element. Then
we can pop the top element off the list and use that element like this

x = pop(l)
This means that the last element of 1 is popped off and assigned to x. And the operation
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18 CHAPTER 1. TOP-DOWN CF RECOGNITION

push(x,])

means that | is extended with the top element x.
Then our first recognition algorithm is this one, for CFGs G in which no category is left-recursive and any
(possibly empty) input i:

TOP-DOWN BACKTRACK CF RECOGNITION(G, 1)
0 ds=[(i,S)] where S is the start category

1 while ds# [] and ds[0]#£([],[]):

2 ds=[d| ds|0] =>¢q d] + ds[1;]

3 if ds==[] then False else True

The loop entered on line 1 is given simply by line 2: if there is a first derivation ds[0], compute the list of derivations
[d] ds[0] =4 d], that is, the list of derivations d such that d can be derived with one top-down step from ds[0], and
then let ds be these new derivations together with any other derivations in the list ds[1:].

1.2 A naive python implementation

First we represent the grammar from page [[1 but without any left recursive rules:

nmnn f,Lle.. 91~py
a grammar with no left recursion
nmnn
gl = [(°s’,[’DP’,°VP’]), # categorial rules
(¢’op’, [’D’, NP’ ]),
¢pbp’, [°NP°]),
(°DP, [*Name’]),
(°DP?, [’Pronoun’]),
e, [°N0]),
¢np2, [°n2,°PP?]),
Cvepe, V1),
¢cve’,[°v’,°DP’]),
¢ver,[°v?,°PP’]),
¢cve,[°v2,°CP’]),
¢cve, [PV, °VP’]),
¢ve>,[°v’,’DP’,’PP’]),
(7VP,,[7V”’DP7,7CP)])’
¢ve>,[°v’,’DP?,°VP’]),
CppP’,[°P°]),
¢pp’,[°P’,°DP’]),
Cape D),
(’AP?,[’A°,°PP?]),
(7CP,,[7C”’S7])’
(’AdvP’, [’Adv’]),
(’NP?, [?AP?,’NP’]),
(’VP’, [’AdvP’,’VP’]),
(’AP’, [’AdvP’,’AP’]),
(°D’,[’the’]), # now the lezical rules
¢p’,[’a’]),
(°D’, [’some’]),
(D, Devery’]),
(’D?, [’one’]),
D) Dtwol),
(’A°,[’gentle’]),
(A, [’clear’]),
(’A’,[’honest’]),
(’A°, [’ compassionate’]),
(’A’, [’brave’]),
(A7, [’kind’]1),
(°N’, [’student’]),
(°N’, [’teacher’]),
N, Deity’]),
(°N’, [Puniversity’]),
(N>, [’beer’]),
N2, [Pwine’]),
(°v’, [’laughs’]),
v, [’cries?’]),
(v, [’praises’]),
C°v’,[’criticizes’]),
Cv, Dsays’]),
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C°v’, [’knows’]),
(’Adv’, [*happily’]),
(?Adv’, [’sadly’]),
(’Adv’, [’impartially’]),
(’Adv’, [’generously’]),
(’Name’, [’Bil1°1),
(’Name’, [’Sue’]),
(’Name’, [?Jose’]),
(’Name’, [’Maria’]),
(’Name’, [’Presidents’,’Day’]),
(’Name’, [’Tuesday’]),
(’Pronoun’, [’he’]),
(’Pronoun’, [’she’]),
(’Pronoun’, [?it’]),
(’Pronoun’, [’him’]),
(’Pronoun’, [’her’]),
Cp’,[’in’]),

P, [’on’]),

P, [Pwith’]),
Cp,[’by’ 1),
Cpr,[to’]),
¢p?,[’from’]),
(’c’,[’that’]),

e, ),

(’°C?, [’whether’]),
(’Coord’,[’and’]),
(’Coord’,[’0or’]),
(?Coord’, [’but’])]

19

Then we can implement the recognizer like this:

" file: td.py

a simple top-down backtrack CF recognizer
nnn

def showGrammar(g): # pretty print grammar
for (lhs,rhs) in g:
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def

def

def

showDerivations(ds):
for (n,(i,cs)) in enumerate(reversed(ds)):

print lhs,’->’,
for cat in rhs:

print cat,
print

print n,’(’,

for w in i: # print each w in input
print w,

print ’,7,

for ¢ in cs: # print each predicted c
print c,

print ’)°

print 7---—-———- ’

nextsteps=[]
for (lhs,rhs) in g:
if 1lhs == cs[0]:
print ’expand’,lhs,’->’,rhs
nextsteps.append((i,rhs+csl))
if len(i)>0 and i[0] == cs[0]:
print ’scan’,i[0] # for trace
nextsteps.append((i[1:]1,cs1))
return nextsteps

else:

return []

recognize(g,i):
s = [(1,[’S°]D]
while ds != [] and ds[-1] !'= ([1,[1):

showDerivations(ds) # for trace
d = ds.pop()
ds.extend (tdstep(g,d))

if ds == []:

# pretty print the ’backtrack stack’

in cs

tdstep(g, (i,cs)): # compute all possible next steps from (i,cs)
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]

# for trace
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return False

else:
showDerivations(ds) # for trace
return True

# Ezamples:

# recognize(gl,[’Sue’, ’laughs’])

# recognize(gl, [’Bill’, ’knows’, *that’, ’Sue’, *laughs’])

# recognize(gl, [’Sue’, ’laughed’])

# recognize(g],[’the’,’student’,’from’,’the’,’university’,’praises’,’the’,’beer’,’on’,’Tuesday’])
# recognize(gl, [’the’, ’student’, ’from’, the’, ’university’, ’praises’, *the’])

# recognize(gl, [’Sue’, ’knows’, *that’, ’Maria’, ’laughs’])

Now in idle, we can load g1.py and then td.py using F'5, or else we can type the load commands like this:

>>> from gl import *
>>> from td import *

Now we are ready to try some examples — a few of these are given in comments at the bottom of td.py:

>>> recognize(gl, [?Sue’, ’laughs’])
0 ( Sue laughs , S )

expand S -> [’DP’, ’VP’]

0 ( Sue laughs , DP VP )
expand DP -> [’D’, ’NP’]
expand DP -> [’NP’]

expand DP -> [’Name’]

expand DP -> [’Pronoun’]

0 ( Sue laughs , D NP VP )

1 ( Sue laughs , NP VP )

2 ( Sue laughs , Name VP )

3 ( Sue laughs , Pronoun VP )

We omit many lines here, since the program does quite a lot of work on even this simple example.

This program correctly implements standard top-down backtrack parsing, but it has some problems! Listing

some of them, from least to most serious:

P1

P2

P3.

1.

. It is unnecessarily slow! Checking the ‘innermost’ loop:
a. In line 26 we see that finding the ezpand steps requires looping through the whole list of rules.

b. In line 27 we see an identity checks on the string names for categories. Since strings are sequences, this
check is slower than, for example, checking the identity of two integers.

. It is necessarily slow! That is, even if we fix the problems in P1, the number of steps required to process an
input of length n can be on the order of k™ for some k > 18 To fix this problem, we need to somehow reduce or
eliminate ambiguity that leads to backtracking. If only we had an oracle who could tell us what to do whenever
there is a choice

With left recursion, it can be non-terminating! This is just problem P2 again in its most extreme form. We
need an oracle or something similar to help us avoid making the wrong choices repeatedly.

3 Exercises

Get one of our implementations of the top-down recognizer (td.py, or one of the others we looked at) and the
grammar gl.py. Rename the grammar g(YOUR INITIALS).py and then modify your version as follows:

1.

Unfortunately, the grammar gl accepts * Sue laughs the student. In the Fromkin text, this is excluded by the
lexical entry for laughs which does not allow this verb to occur with a direct object. There, the verbs come
with additional information about what they select: intransitives like laughs do not take DP complements, but
transitives like praises do. Verbs like knows can select DP or CP complements, but verbs like laugh cannot. Fix
the grammar in td0 to get all these things right, for the 6 verbs given.

3For proof see [1}, p.299].
4We will build oracles later. And notice that with an artificial languages, we can simply modify the language to eliminate ambiguity!
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2. If you did the previous step right, it should turn out that your new grammar will never use the rule VP — V
VP. That rule was included in the Fromkin text for auxiliaries, and grammar gl does not include any auxiliaries
in its list of verbs.

Add auxiliaries (using 3rd person present for the finite forms) and bare verbs (laugh) and participle forms

(laughed, laughing), so that the recognizer accepts the examples the left, but not the ungrammatical forms on
the right:

Sue will laugh * Sue will laughs
Sue has laughed * Sue has laughs
Sue is laughing * Sue is laughed

Sue has been laughing * Sue will been laughing
Sue will be laughing * Sue has be laughing

Your changes should be as minimal and as linguistically reasonable as possible. Test your new grammar with the
recognizer, and when it is working as required, send it to me as an attachment with “HW1 185a” in the subject line.
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Chapter 2 Top-down CF parsing

2.1 TD backtrack parsing (complete derivations)

It is a simple matter to modify our recognizer to record a history of the steps taken in the derivation. We modify
the pseudocode from page [1§] as follows:

TOP-DOWN BACKTRACK CF PARSING(G, 1)

0 ds=[(i,S,[(i,9)])] where S is the start category
1 while ds# [] and ds[0]#([],[]):

2 ds=[d| ds[0] =ap, d] + ds[1:]

3 if ds==[] then False else True

where the steps =145, are defined as follows:

input, Xa, h . winput, wa, h
(expand) - - ifX —pg (scan)
input, Sa, h(input, S«)

input, «, h(input, )

The implementation is also an easy change from the td.py. Now that we are looking at the derivations, it is
sometimes of interest to see more than one of them, and so we separate the main derive step from the parse
function which now asks the user whether to look for another parse:

" file: tdh.py
first parser: collect history
nmnn
def tdhstep(g,(i,cs,h)): # compute all possible next steps from (i,cs)
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]
nextsteps=[]
for (lhs,rhs) in g:
if 1lhs == cs[0]:
print ’expand’,lhs,’->’,rhs # for trace
hil = h[:] # copy of history
h1l.append((i,rhs+csl))
nextsteps.append((i,rhs+cs1,hl))
if len(i)>0 and i[0] == cs[0]:
print ’scan’,i[0] # for trace
i1=i[1:]
hil = h[:] # copy of history
h1l.append((il,cs1))
nextsteps.append((il,cs1,h1))
return nextsteps
else:
return []

def derive(g,ds):
while ds !'= [] and not (ds[-11[0] == [] and ds[-1][1] == [1):
d = ds.popQ)
ds.extend (tdhstep(g,d))

def parse(g,i):
ds = [(1,[’s’],[(i,[’s’1OD]
while ds !'= []:
derive(g,ds)
if ds == [J:
return ’False’
else:
d=ds.pop()

23
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for n,step in enumerate(d[2]):
print n,step

ans = raw_input(’more? ’)

if len(ans)>0 and ans[0]==’n’:
return d[2]

# Exzamples:

# parse(gl, [’Sue’, ’laughs’])

# parse(gl,[’the’, ’student’, ’laughs’])

# parse(gl,[’the’, ’student’, ’praises’, ’the’, *beer’])
# parse(gl,[’Bill’, ’knows’, *Sue’, ’laughs’])

With this code, we get sessions like this one (we have removed many output lines):

>>> from gl import *

>>> from tdh import *

>>> parse(gl, [’Bill’, ’knows’,’Sue’,’laughs’])
expand S -> [’DP’, ’VP’]

expand DP -> [’D’, ’NP’]

scan laughs

0 ([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’S’])

1 ([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’°DP’, ’VP’])

2 ([’Bill’, ’knows’, ’Sue’, ’laughs’], [’Name’, ’VP’])
3 ([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’Bill’, ’VP’])
4 ([’knows’, ’Sue’, ’laughs’], [’VP’])

5 ([’knows’, ’Sue’, ’laughs’], [’V’, °DP’, ’VP’])

6 ([’knows’, ’Sue’, ’laughs’], [’knows’, ’DP’, ’VP’])
7 ([’Sue’, ’laughs’], [’DP’, ’VP’])

8 ([’Sue’, ’laughs’], [’Name’, ’VP’])

9 ([’Sue’, ’laughs’], [’Sue’, ’VP’])

10 ([’laughs’], [’VP’])

11 ([’laughs’], [’V’])

12 ([’laughs’], [’laughs’])

13 ([1, [

moref?] y

expand NP -> [’N’]

scan laughs

([’Bill’, ’knows’, ’Sue’, ’laughs’], [’S’])
([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’DP’, ’VP’])
([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’Name’, ’VP’])
([’Bill’, ’knows’, ’Sue’, ’laughs’], [’Bill’, ’VP’])
([’knows’, ’Sue’, ’laughs’], [’VP’])

([’knows’, ’Sue’, ’laughs’], [’V’, ’CP’])

([’knows’, ’Sue’, ’laughs’], [’knows’, ’CP’])
([’Sue’, ’laughs’], [’CP’])

([’Sue’, ’laughs’], [’C’, ’S’])

([’Sue’, ’laughs’], [’S’])

10 ([’Sue’, ’laughs’], [’DP’, ’VP’])

11 ([’Sue’, ’laughs’], [’Name’, ’VP’])

12 ([’Sue’, ’laughs’], [’Sue’, ’VP’])

13 ([’laughs’], [’VP’])

14 ([’laughs’], [’V’])

15 ([’laughs’], [’laughs’])

16 (1, 1

moref?] y

expand NP -> [’N’]

OCO~NOOP»WN O

expand D -> [two’]
’False’

We see there are two derivations of this string! Two points to notice:

e Neither derivation is intended! That is, neither derivation corresponds to an analysis of the string which we
expect competent speakers of English to formulate. We got these derivations because the grammar gl.py is
not enforcing the selection requirements of the verbs.

e If you check, you will see that the number of steps in each derivation is exactly the number of nodes in the
corresponding derivation tree! More on this later.
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2.2. TD BACKTRACK PARSING (RULES USED) 25

2.2 TD backtrack parsing (rules used)

We could get the whole derivation tree from the history, but it is more convenient to use a smaller representation:
the list of rules used in the derivation, in order. A very minor change in the previous program achieves this:

TOP-DOWN BACKTRACK CF PARSING(G, 1)
0 ds=[(i,S,[])] where S is the start category
1 while ds# [] and ds[0]#([][]):

2 ds=[d| ds[0] =ap d] + ds|[1:]

3 if ds==[| then False else True

where the steps =4, are defined as follows:

input, Xa, h . w input, wa, h
- ifX =g (scan) ——
input, Sa, h(X — ) input, a;, h

(expand)

The implementation is easy:

" file: tdp.py stabler@ucla.edu
return the rules used in succsesful derivation
nmnn
def tdpstep(g,(i,cs,p)): # compute all possible next steps from (i,cs)
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]
pl = pl:1 # copy of rewrites so far
nextsteps=[]
for (lhs,rhs) in g:
if lhs == cs[0]:
#print ’exzpand’,lhs,’->’,rhs # for trace
nextsteps.append((i,rhs+csl,pl+[[1hs]+rhs]))
if len(i)>0 and i[0] == cs[0]:
#print ’scan’,t[0] # for trace
i1=i[1:]
nextsteps.append((il,csl,pl))
return nextsteps
else:
return []

def derive(g,ds):
while ds !'= [] and not (ds[-1]1[0] == [] and ds[-1]1[1] == [1):
d = ds.popQ)
ds.extend (tdpstep(g,d))

def parse(g,i):
ds = [(i,[’s’],[D)]
while ds !'= []:
derive(g,ds)
if ds == [J:
return ’False’
else:
d=ds.pop()
print ’11=’,d[2]
ans = raw_input(’another? ’)
if len(ans)>0 and ans[0]==’n’:
return d[2]

# Exzamples:

# parse(gl,[’Sue’, ’laughs’])

# parse(gl,[’the’, ’student’, ’laughs’])

# parse(gl,[’the’, ’student’, ’praises’, ’the’, *beer’])
# parse(gl,[’Bill’, ’knows’, *Sue’, ’laughs’])

With this code, we get sessions like this one:

>>> from gl import *

>>> from tdp import *

>>> parse(gl, [?Sue’, ’laughs’])

11= [[’s’, °DP’, °VP’], [’DP’, ’Name’], [’Name’, ’Sue’], [’VP’, °V’], [’V’, ’laughs’]]
another[?] n

[(c’s», °op’, °vep’], [’DP’, ’Name’], [’Name’, ’Sue’], [’VP’, °V’], [’V’, ’laughs’]]

>>>
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26 CHAPTER 2. TOP-DOWN CF PARSING

2.3 Pretty print list format trees

A standard format for trees is to use a list where the first element is the root and the rest of the list is a list of its
subtrees. So for example, [S] is the tree containing just one node. [S DP VP] is the tree with root S and subtrees
DP VP. When trees get larger, the list notation is less easy to read, so we can “pretty print” these trees in a more
readable form:

" file: pptree.py stabler@ucla.edu
pretty print a tree given in list format
nnn
def pptree(n,t): # pretty print t indented n spaces
if isinstance(t,list) and len(t)>0:
print nx’ ’, t[0] # print root
for subtree in t[1:]: # then subtrees indented by /
pptree(n+4,subtree)
else:
print ’\n’+’ ’#n,t
" ezample:
pptree(0,[°TP?, [’DP’, [’John’]], [’VP’, [’V’,[’praises’]], [’DP’, [’Mary’]]]])
pptree(0,[1, 2, [3, 41, [5, 6]1])

mmn

With this code, we get sessions like this one:

>>> from pptree import *
>>> t = [’s’, [’DP’, [’Name’, ’Sue’l], [’VP’, [’V’, ’laughs’]]]
>>> pptree(0,t)

DP
Name

Sue
VP

laughs
>>>

2.4 From rules to derivation trees in list format

Our parser returns the list of rules used in a successful derivation, listed in leftmost derivation order, sometimes
called ‘preorder’ or LL order. Getting from the rules to derivation trees requires that we be able to recognize
terminal productions. Here, we simply assume that the categories are disjoint from the nonterminals, and so if we
are building a left branch, the terminal at the leaf will always be distinct from the category to be expanded next.
With this convention, we do not need an independent way to tell whether a string is a category or terminal:

nmnn llZdt;py
convert LL list of rules to list-format tree
nmnn
def 112dt(11):
print ’11=’,11
if isinstance(ll,list):
11.reverse()
return 11r2dt(11)
else:
return False

def 11r2dt(llr):

t=11r.pop()

for i in range(l,len(t)):

if len(11lr)>0 and len(llr[-1]1)>0 and t[i]==11r([-1][0]:
t[1]=11r2dt (11r) # recursive def most natural, and not too deep

return t
# example:
# 11=[[’S’, ’DP’, °VP’], [’DP’, ’Name’], [’Name’, °’Sue’], [’VP’, °V’], [’V’, ’laughs’]]
# 112dt(11)
# pptree(0,112dt (parse(glnoe, [’Sue’, ’laughs’])))
# pptree(0,112dt (parse(glinoe, [’the’, ’student’, ’laughs’])))

With this code, we get sessions like this one:
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2.5. FROM LIST FORMAT TREES TO NLTK TREES

>>> from gl import *

>>> from tdp import *

>>> from 112dt import =*

>>> 11 = parse(gl, [’Sue’,’laughs’])
11= [[’s’, °DP’, °VP’], [’DP’, ’Name’]
another[?] n

>>> 11

[(C’s’>, °op’, °vep’], [’DP’, ’Name’], [’Name’,

>>> 1124t (11)
11= [[’S’, ’DP’, °VP’], [’DP’, ’Name’]

, [’Name’,

, [’Name’,

[’s’>, [’DP’, [’Name’, ’Sue’]], [’VP’, [’V’, ’laughs’]]]

>>>

’Sue’], [’VP’,
’Sue’], [’VP’, *V’],
’Sue’], [’VP’,

2.5 From list format trees to NLTK trees

It is easy to convert our trees to the format used by the python NLTK library, and then we can use their graphical

display utilities:

)V)] s

)V)] s

[’v’, *laughs’]]

[°v’, ’laughs’]]

[’v’, *laughs’]]

27

" list2nltktree. py

convert a list-format tree to an NLTK tree

mmnn

from nltk.util import in_idle
from nltk.tree import Tree
from nltk.draw import *

def list2nltktree(listtree):
if isinstance(listtree,list):
if listtree==[]:

subtrees=[list2nltktree(e) for e in listtree[1:]]

return []
else:
if subtrees == []:
return listtree[0]
else:

return Tree(listtree[0],subtrees)

else:
return listtree

"t jith an NLTK tree, we can use NLTK tree display:
’laughs’]]]

to = [’S?, [’°DP’, [’Name’, °’Sue’]], [’VP’,

list2nltktree(t0).draw()
TreelView(t0)

[)V))

TreeView(list2nltktree(ll2dt (parse(gl, [’Sue’, ’Llaughs’]))))

mmn

With this code, we get sessions like this one:

>>> from list2nltktree import =*
>>> t = [’S’, [’DP’, [’Name’, ’Sue’]],
>>> list2nltktree(t)

e,

[’v’, ’laughs’]]]

Tree(’S’, [Tree(’DP’, [Tree(’Name’, [’Sue’])]), Tree(’VP’, [Tree(’V’, [’laughs’]1)]1)])

>>>

The advantage of the nltk format is that we can then use the nltk graphical display tools. If we type

list2nltktree(t) .draw()

We get a tree display like this:

N
DP VP

| |
Name v

| |
Sue laughs

NLTK
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28 CHAPTER 2. TOP-DOWN CF PARSING

2.6 Standard TD backtrack parsing

If you do not have NLTK:

" file: tdp_setup.py
load grammar, td parser and tree utilities
nmnn
from gl import =*
from tdp import x*
from 112dt import *
from pptree import *

def eg0():
t = 112dt(parse(gl, [’Sue’, ’laughs’]))
pptree(0,t)

def egl(D: # nb: g1 allows 2 unintended parses for this one!
t = 1l12dt(parse(gl, [’Bill’,’praises’,’the’, ’student’,’on’,’Tuesday’]))
pptree(0,t)

def rpp(): # simple read-parse-print
line = raw_input(’: ?)
i = line.split() # built-in python function, splits line at spaces
t = 1l12dt(parse(gl,i))
pptree(0,t)

Now we can have sessions like this:

>>> rpp()
: the student praises the beer on Tuesday

11= [[’s’, °DP’, ’VP’], [’DP’, °D’, °NP’], [’D’, ’the’], [’NP’, °N’], [’N’, ’student’],

another[?] n

11= [[’s’, °DP’, ’vP’], [’DP’, °D’, °NP’], [’D’, ’the’], [’NP’, °N’], [’N’, ’student’],

S
DP
D
the
NP
N
student
VP
v
praises
DP
D
the
NP
N
beer
PP
P
on
DP
Name
Tuesday
>>>

e,

e,

)V) .

7V7 .

If you have NLTK, you can do the same thing but with a nicer, graphical display of successful parses:

’DP?,

’DP?,

e file: tdp_setup2.py
load grammar, td parser and NLTK tree utilities
nnn
from gl import =*
from tdp import *
from 112dt import *
from pptree import *

’PP’],

PP’],

[,V, s

[’V’ b
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2.6.

from
from
from
from

def

def

def

STANDARD TD BACKTRACK PARSING

nltk.util import in_idle
nltk.tree import Tree
nltk.draw import *
list2nltktree import *

eg0():

t = 1l2dt(parse(gl, [’Sue’,’laughs’]))

if isinstance(t,list):
list2nltktree(t) .draw()

egl(): # nb: gl allows 2 unintended parses for this one!
t = 112dt(parse(gl, [’Bill’,’praises’,’the’,’student’,’on’, ’Tuesday’]))
list2nltktree(t) .draw()

rpp(): # simple read-parse-print
line = raw_input(’: ?)
i = line.split()
t = 112dt(parse(gl,i))
if isinstance(t,list):
list2nltktree(t) .draw() # NLTK tree drawing function

29
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2.7 Assessment: TD time and space requirements

We have seen that getting from a TD recognizer to a parser is fairly easy: we simply record the steps in the
derivation, in a way which has no influence on the course of the derivation but only on the output. The parser
makes it easier to explore properties of the recognizer, so let’s return now to consider more carefully the basic
properties of the top-down backtracking recognizer.

2.7.1 Soundness, completeness, and search

It is easy to see (and not difficult to prove conclusively) that the rules =4 are sound and complete, for any context
free grammar (CFG) in the following senses:

(soundness) For any CFG, if (i,5) =7, (¢, €) then i € L(G).
(completeness) For any CFG, if i € L(G), then (3, 5) =7, (¢, €)
On the other hand, the backtrack search has these undesirable properties:

(nontermination) For CFGs that have left recursion, the backtrack search can fail to terminate.

(inefficiency) Even for CFGs lacking left recursion, the number of steps required to recognize a string i € L(G)
is not bounded by any polynomial function of the length of 7.

These problems do not arise if the grammar has no left recursion and is deterministic, as discussed further in §2.7.7]
below.

2.7.2 Predictiveness and incrementality

Although we have only printed out tree representations at the end of a parse, it is clear that we could have formulated
the tree representations built at every step. When we do that, we see that the predicted categories at every step
are, at every point, connected to the root. At every point, we have one, connected structure with its predicted
categories in the recognizer’s memory. This is a possible advantage for making sense of the fact that people normally
understand what they hear on a word-by-word incremental basis [4, [35] B37].

Consider, for example, the seven step recognition of Sue laughs using our grammar gl. We can depict these
steps by showing in red what is in the parser memory at each point:

S S S S
bf Ve pF Ve DB Vb
Na‘me Na‘me
Sl‘le

step 4 step 5 step 6 step 7

S S S S
bF Ve DF VP  DF VP  DP VP
Na‘me Na‘me \‘/ Na‘me \‘/ Na‘me \‘/

Sl‘le Sl‘le Sl‘le lau‘ghs Sl‘le lauLghs

At each point, the completed parts (shown in black) form connected, incrementally interpretable structures. With
TD parsing, the completed structures always have this character, no matter what the grammar is. As we will see
later, most other parsers do not have this property. Now that we have parsers, it is easier to see, as scientists or
formal-language-theorists, what is going on in top-down recognition.

2.7.3 One parse at a time: garden pathing

It is often proposed that humans have difficulty with certain local ambiguities (or fail completely), resulting in the
familiar “garden path” effects{] The following sentences exhibit extreme difficulty, but other less extreme variations
in difficulty may also evidence the greater or less backtracking involved:

IThere are many studies of garden path effects in human language understanding. Some of the prominent early studies are the

following: [3| 12} [14] 1T} 7] [30].
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The horse raced past the barn fell

IS

Horses raced past barns fall

The man who hunts ducks out on weekends

/oo

Fat people eat accumulates
e. The boat floated down the river sank
f. The dealer sold the forgery complained

g. Without her contributions would be impossible

In all of these cases, it seems that we initially are considering an analysis that must later be rejected, and sometimes
it is difficult to recover from our mistake. This initially very plausible idea has not been easy to defend. One kind of
problem is that some constructions which should involve backtracking are relatively easy: see for example [30, [13].

2.7.4 Right branching derivations, regularity, and space

Among the grammars that the TD recognizer can handle are some that define only regular languages. In particular,
we know that if a grammar has only right branching (or only left branching), the language it defines is regularE A
regular language is one that can be recognized with only finite memory, so let’s explore how much memory the TD
recognizer needs for regular languages.

Our derivations divide the memory requirements into 3 parts:

(input buffer, recognizer memory, output buffer),

where the recognizer memory is what contains the predictions that must be remembered in order to complete the
recognition correctly. The syntax acts only on contents of the recognizer memory: expanding an element using a
rule of the grammar. Let’s set aside the “input buffer” and the “output buffers” for a moment, and consider just the
recognizer memory.

Since many grammars are non-deterministic, presenting choices in how to expand categories, we need another
kind of memory too, the backtrack stack that remembers choices that have not yet been pursued. Let’s set non-
determinism aside for a moment too, returning to it in §2.7.7 below, and consider the recognizer memory.

First, consider how much memory is needed to parse grammars that have only simple right branching parses —
where the left categories in binary productions are all lexical. That is, every rule has the one of the forms

A — BC where B — w but not B — CD
A—w for w a vocabulary element
A=

Grammars of this form can be regarded as finite state machines, where there is a transition from state A to C
labeled with w iff there is a rule A — BC where B — w; the start category of the grammar is the unique start

state of the machine; and a state A is a final state iff there is a rule A — [].
Consider the following grammar, for example:

nmnn f’l/le: gz'py
a right branching grammar (no left recursion!)

g2 — [(’S’,[’A’,’S’]),
¢s, 1),
(’S’,[’B’,’BO’]),
(’B0’,[’B’, B1°]),
(’B1,[’B’,’B2°]),
(’B2’,[’B,’B3°]),
(’B3’,[’B’,B4’]),
(’B4’,[’B,’B5°]),
(’B5”,[’B’, B6°]),
(’B6”,[’B,B7°]),
(’B7’,[’B,’B8’]),
(’8’,[’B,B9°1),
CB9, [,
Cr,0a]),
CB’, b’ ]),
]

2In fact, a ‘regular’ or ‘finite state’ language is often defined to be one that can be generated by a right branching (or left branching)
grammar. The equivalence between these grammars and ‘finite state machines’ is then an easy proof. See for example, [34] [36, [27] [I§].
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If we draw this grammar as a finite state machine it looks like this:

CHAPTER 2. TOP-DOWN CF PARSING

blO

If we look at the derivation tree for b, we see that it has 31 nodes:

>>> from tdp_setup2 import *
>>> 11=parse(g2,[’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’])

11= [[’S’, 7B7, 7BO’], [’B’, 7b7], [7BO’, 7B7, 7B1’], [’B’, 7b7], [7B1’, ’B’, ’B27], [’B’,
another[?] n
>>> £=112dt (11)
11= [[as)’ ’B?, ’BO’], [’B’, ’b’], [’BO’, ’B?, ’Bl’], [’B’, ’b’], [’Bl’, 'B?, ’B2’], [’B’,
>>> list2nltktree(t) .draw()
800 MNLTE
S
RN
B BO
P2
b B B1
N
b B B2
PN
b B B3
| N
b B B4
PN
b B B5
PN
b B B6
PN
b B B7
AN
b B B8
I A\
b B BS
'|
b
And so we know that our TD recognition will require 31 steps too:
>>> from g2 import *
>>> from tdh import *
>>> parse(g2,[’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’])
6'&t’b’, ’b’, ’b’, 7b7, 7b7, 7b7, 7b7, 7b7, 7b7, 7b7], [757])
1 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’], [’B’, ’B0’])
2 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’], [’b’, ’B0’])
3 ([’b’, ’b’, ’b’, 7b7, 7b7, 7b7, 7b7, 7b7, 7b7], [’BO’])
4 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’, ’b?, ’b’], [’B’, ’B1°])
5 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’, ’b?, ’b’], [’b’, ’B1°])
6 ([’b’, ’b’, ’b’, 7b7, 7b7, 7b7, 7b7, 7b7], [7B1’])
7 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’], [’B’, ’B2°])
8 ([’b’, ’b’, ’b’, 7b7, 7b7, 7b7, 7b7, 7b7], [7b7, ’B27])
9 ([’b’, ’b’, ’b’, 7b7, 7b7, 7b7, 7b7], [7B2’])
10 ([’b’, ’b?, ’b’, ’b’, ’b’, ’b’, ’b’], [’B’, ’B3°])
11 ([7b7, ’b’, ’b’, ’b’, ’b’, ’b’, ’b’], [’b’, 7B3)])
12 ([7b7, ’b’, ’b’, ’b’, ’b’, ’b’], [’B37])
13 ([’b’, ’b?, ’b’, ’b’, ’b?, ’b’], [’B’, 'B4’])
14 ([7b7, ’b’, ’b’, ’b’, ’b’, ’b’], [’b’, 7B4’])
15 ([’b’, ’b?, ’b’, ’b’, ’b’], [’B4°])
16 ([’b’, ’b?, ’b’, ’b’, ’b’], [’B’, ’B5°])
17 ([7b7, ’b’, ’b’, ’b’, ’b’], [’b’, 7B5’])
18 ([’b’, ’b’, ’b’, ’b’], ['B5°1)
19 ([7b7, ’b’, ’b’, ’b’], [’B’, ’BG’])
20 ([7b7, ’b’, ’b’, ’b’], [’b’, ’BG’])
21 ([’b’, *b’, ’b’]1, [’B6°1)
22 ([’b’, ’b’, ’v’], [’B’, ’B7’])
23 ([’b’, ’b’, ’v’], [’b’, ’B7’1)
24 (['b’, *v’], [B7’D)
25 ([’b’, ’b’], [’B’, ’B8’])
26 ([’b’, *b’1, ['b’, ’B8’1)

’b’],

)b)] .

[7B2’ )

[’B27,

)B) s

)B) s

’B37] s

’B3°],

P

D
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27 ([’b’], [’B8’1)

28 ([’v’], [’B’, ’B9’])
29 ([’v’1, [’b’, ’B9’])
30 (01, [°B9°1)

31 (0,

more7] n

It is easy to see that with simple right branching derivations like this one, the amount of space required in the stack
of predicted categories is bounded by a finite constant. For this grammar, the bound is 2. We never need more
space than that to remember what is required in the rest of the string. This makes sense, since the language is
finite state.

2.7.5 Digression: Finite state models of human language

Evidence for non-finite-stateness of human languages. Let’s write

HG for the grammars of human languages,

HL for the set of human languages, defined by the grammars HG,
Reg for the set of finite state (i.e. regular) grammars, and

L(Reg) for the set of regular languages, defined by the grammars Reg.

These two ideas are widely accepted:

a. (HG¢Reg) The syntax (i.e. the grammar) used by speakers of human languages is not finite state.

b. (HLZL(Reg)) The languages (i.e. the set of sentences generated by the grammars) used by speakers of human
languages are not finite state.

It is quite possible to use a non-finite-state CFG to define a finite or finite state language. In fact, CFG definitions
of finite and regular sets can be exponentially more succinct than the smallest regular, finite state grammar (Reg)
definitions of the same languages [I7]. Consequently, accepting (HG¢ZReg) does not entail (HLZL(Reg)). In the
other direction though, we do have entailment: if (HLZL(Reg)), then obviously (HGZReg).

a. Evidence for (HL¢ZL(Reg)). The evidence for this claim is usually given by taking some example languages,
and arguing that they are not regular in a way that is naturally stated using the following important result:

(Nerode-Myhill theorem) Given any language L over alphabet X, for any string of words z, define the
‘good finals’ of x with respect to L:

goodFinals; (z) = {y| zy € L}.
And let’s say « = y iff goodFinalsy (x)=goodFinalsy,(y), and for any string z let’s write
(2] = {yl = = v},
Then L is regular iff the set of equivalence classes is finitefd

{[z]r] = € £*} is a finite set.

For English, the argument can be given by presenting an infinite sequence of sequences of words that all have
different good finals, like this:

oysters
oysters oysters
oysters oysters oysters

3The Myhill-Nerode theorem is presented in Khoussainov&Nerode’01 [22, Thm 2.4.1]; in Salomaa’69 [33] Thm 5.4]; in Sakarovitch’09
[32] Props 3.11,3.12]; and in Hopcroft&Ullman’79 [19] §3.4] at the end of their second chapter on finite automata. The Myhill-Nerode
theorem and Kleene’s theorem are perhaps the most important results in formal language theory. Kleene’s theorem says that the
regular languages are the closure of the set {0} U {{a}| a € £} with respect to concatenation, union, and Kleene star. A nice, modern
presentation of Kleene’s theorem can be found in [32, Thm 2.1].
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Now, the empirical claim is that, in the languages defined by the grammars of English speakers, no two elements
of this sequence has the same good finals. For example, clearly oysters eat is a good sentence. And oysters are
cannibalistic, so the sentence oysters (that) oysters eat eat is not only grammatical but sensible and true. Now
the relevant facts for are claim are these:

eat € goodFinals(oysters), but eat ¢ goodFinals(oysters oysters) or any other seq in the list
eat eat ¢ goodFinals(oysters) or any other seq except goodFinals(oysters oysters)

and similarly for every other pair. The expressions oysters™”eat™ exhibit a kind of center-embedded dependency
that cannot be defined with a regular grammar. This kind of argument is standard in the field (see for example
[20]), but I do not regard it as persuasive by itself! It depends on judgements about center embeddings that
become unacceptable already around depth 2! This argument is only persuasive when we add the consideration
that HG¢Reg, to which we turn now.

Evidence for (HG¢ZReg). In the 1960’s various kinds of evidence were offered for this claim. The strongest
kind of evidence comes from the idea that finite state grammars cannot define the kinds of constituents which
are abundantly evidenced by semantic considerations (defining meaningful units), syntactic arguments (defining
grammars in which discontinuous dependencies are recognized appropriately) and by various sorts of psycholin-
guistic evidence. For example, various studies of recalling substrings of sentences show that constituents are
easier to remember than substrings that straddle constituent boundariesf Miller’67 summarized the upshot of
these studies, saying;:

... constituent structure languages are more natural, easier to cope with, than regular languages. .. The
hierarchical structure of strings generated by constituent-structure grammars is characteristic of much
other behavior that is sequentially organized; it seems plausible that it would be easier for people than
would the left-to-right organization characteristic of strings generated by regular grammars. [29]

Non-finite-state constituency is also evidenced by the perceptual effects demonstrated by the ‘click’ studies
[24, 9], and many other phenomena.

Certain aspects of human languages appear to be finite state though:

o The set of derivations defined by a CFG is a reqular tree set (modulo renaming categories). This was proven
by Thatcher’67 [38]. We may return to this idea later, since we also have. ..

o The set of derivations defined by a ‘minimalist grammar’ (MG) is a regular tree set (modulo renaming
categories). This idea follows directly from the results of Michaelis’98 [28]. Recently Kobele’l1l and Graf’11
[23][16] strengthened that insight by showing that the class of MG derivation trees is closed under intersection
with regular tree languages.

e Phonotactics is finite-state. The SPE phonology of Chomsky&Halle’68 [5] used very powerful rewrite rules,
but later analysis by Kaplan&Kay’94 [21] showed that finite state power suffices for almost everything, and
this remains true in OT phonology [311 2] [§] if reduplication is set aside.

2.7.6 Left branching derivations, regularity, and space

Now let’s consider this grammar, in which all branching is to the left:

nn

"n

g3

" file: g3.py
a left branching grammar (no left recursion!)

= [(737’[7307’7]37])’
(’B0’,[’B1’,°B’1),
(’B1’,[’B2’,7B’1),
(’B2’,[’B3’,°B]),
(’B3’,[’B4’,’B 1),
(’B4>,[’B5’,’B’]),
(’B5’,[’B6”,°B]),
(’B6”,[’B77,7B’1),
(’B7°,[°B8”,°B’1),
(’B8”,[’B9’,’B’1),
(’B9”, 1),
¢B>,[’b’ D]

4See e.g. Fodor, Bever and Garrett’74 [I0] for a good review of this early work.
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This grammar accepts b'® too, with this derivation:

800

NLTK

s
N

o—m
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If we look at the parser memory requirements for the 31 step derivation, though, we get a very different picture

(running off the right edge of the page — but it should be clear what is happening!)

>>> from g3 import *

>>> from tdh import *
>>> parse(gS,[’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’,’b’])

expand S -> [’B0O’,

7B7]

expand BO -> [’B1’, ’B’]

(v,
(b7,
(b7,
(v,
(b7,
(v,
(v,
(b7,
(v,
(v,
(b7,
(b2,
(b7,
(b7,
(b2,
(b7,
(b7,
(b2,
(b7,
(b2,
(b2,
(b7,
(b2,
(b2,
(b7,
(b2,
(b7,
(b7,
(b2,
([’v’],
(b1,
a,
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Notice that the number of elements in the parser memory increases as we go down the left branch. The longer the
left branch is, using any left branching grammar, the more parser memory required, without bound. So although
left branching grammars define only finite state languages, the TD recognizer requires unbounded memory to handle

them. Do humans have great difficulty with left-branching? It seems not [15].

)B)])



36 CHAPTER 2. TOP-DOWN CF PARSING

2.7.7 Determinism: time, space, nontermination

As we mentioned in the previous chapter, the TD recognizer will fail to terminate if the grammar has left recursion,
and even when it doesn’t, the number of steps the parser takes can be on the order of k™ for some k > 1, as shown
in [T p.299]. This is because of nondeterminism! What can we do?

‘Lookahead’ can reduce local ambiguity, but English is not LL(%) for any k.

Consider the following simplistic grammar for sentences like the dog [that I told you about] barks:

S — DP VP

DP — D NP

D — the

NP — NP CP

NP - N

N — dog

CP — that I told you about
VP — barks

A TD recognizer processing this example gets to the point:
(dog that I told you about barks, NP VP)

Here, by looking 2 words ahead, we see that, and so we might think that this lets us know that we should use the
first NP rule:

(dog that I told you about barks, NP CP VP)

But here again, looking 2 words ahead, we still see that, and now it would be a mistake to use the first NP rule.
Clearly, if there is a finite limit k£ on how many words ahead we can look, we will not be able to decide which rule
to use. A language is said to be LL(k) if we can always decide which rule to use with k& symbols of lookahead, so
this and many other constructions show that English is not LL(k) for any k.

Quickly surveying some of the other cases of local ambiguity which could present problems:

Subject-verb agreement. In simple English clauses, the subject and verb agree, even though the subject and
verb can be arbitrarily far apart:

a. The deer {are, is} in the field
b. The deer, the guide claims, {are, is} in the field
¢. The deer who prance about are/*is in the field
d. The deer who prances about *are/is in the field
Bound pronoun agreement. The number of the embedded subject is unspecified in the following sentence:
a. I expect the deer to admire the pond.
But in similar sentences it can be specified by binding relations:
b. I expect the deer to admire {itself,themselves} in the reflections of the pond.
Head movement can move a head away from disambiguating context:
a. 1. Have the students take the exam!
ii. Have the students taken the exam?
b. i. Is the block sitting in the box?
ii. Is the block sitting in the box red?
A’ movement can create ‘doubtful gaps’, separated from disambiguating context:
a. who; did you expect ¢; to make a potholder

b. who; did you; expect PRO; to make a potholder for ¢;
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English has intractable global ambiguity, like other human languages.

A context free grammar can have infinitely many derivations for one string. For example, this grammar has one
string but infinitely many derivations:

S—8S S—a.

How much structural ambiguity do sentences of human languages really have? We can get a first impression of how
serious the structural ambiguity problem is by looking at simple artificial grammars for these constructions.

1. PP attachment in [, V D N PP1 PP2 ...]. Consider a grammar with these rules:

VP — VP PP
NP — NP PP

If we calculate how many structures are allowed in strings when there are n PPs, we findf

n = 1 2 3 4 5) 6 7 8 9 10
#Htrees = | 2 5 14 132 469 1430 4862 16796 1053686

2. N compounds [,, N NJ]. These can be generated by the rule
N—+NN

If we calculate how many structures are allowed in strings when there are n Ns, we find the same series as for
PPs

)

n 1 2 3 4 5 6 7 8 9 10
#trees |1 1 2 5 14 42 132 429 1420 4862

3. Coordination [, X and X]. If coordination is always binary, the ambiguities are similar to the previous
cases. To make things interesting, suppose we assume that in addition to binary coordination, English allows
arbitrary lists of coordinates, with a rule like this:

NP — NP (and NP)*
Note that this is not a standard context-free rule. It is equivalent to a grammar with infinitely many rules:

NP — NP and NP
NP — NP and NP and NP
NP — NP and NP and NP and NP

Then with n NPs, the number of structures allowed grows like this:

n 1 2 3 4 5 6 7 8 9 10
#trees |1 1 3 11 45 197 903 4279 20793 103049

Do these kinds of ambiguity-creating elements really crop up in substantial numbers? Consider the 9 PPs and other
modifiers in this phrase that is engraved in stone at the UBC Museum of Anthropology:

The government of the province of British Columbia has contributed to the building of this museum to honour
the centenary of the province's entry into confederation in the conviction that it will serve and bring pleasure
to the people of the nation.

Or consider the following example

Enriched with minerals and vitamins, the purified soybean meal is colored, flavored, pressed, shaped and cut
into bits that look and taste like bacon chips or strips, pork sausage, ground beef, sliced ham or chicken and
are cheaper and just as nourishing as the real thing. (from the American Publishing House for the Blind
(APHB) corpus) [25]

5This is the Catalan series Cat(n) = (3) — (ffl). Its growth is not bounded by any polynomial function of n. Classic discussions

appear in [6] 26].
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2.7.8 Implementing a timer, counting number of steps

To explore the number of steps a grammar takes, it is easy to add a ‘timer’, a count of the number of steps, to any
of our previous programs. One way to do this in python is with a ‘global variable’, that is, a variable that scopes
over the entire computation. Here we add a timer and print it out with lines 6,13,17,24,25,31:

" file: tdt.py
a simple top-down backtrack CF recognizer,
with a step-counter (’time’, measured in steps)
nnn
def tdstep(g,(i,cs)): # compute all possible next steps from (i,cs)
global steps
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]
nextsteps=[]
for (lhs,rhs) in g:
if 1lhs == cs[0]:
#print ’exzpand’,lhs,’->’,rhs # for trace
steps = steps+l
nextsteps.append ((i,rhs+csl))
if len(i)>0 and i[0] == cs[0]:
#print ’scan’,t1[0] # for trace
steps = steps+1l
nextsteps.append((i[1:],cs1))
return nextsteps
else:
return []

def recognize(g,i):

global steps

steps = 0

ds = [(3,[’s’]]

while ds !'= [] and ds[-1] != ([1,[]):
#showDerivations(ds) # for trace
d = ds.pop(Q)
ds.extend(tdstep(g,d))

print ’steps=’,steps

if ds == []:
return False

else:
#showDerivations(ds) # for trace
return True

Ezamples:

recognize(gl, [’Sue’, *laughs’])

recognize(gl, [’Bill’, ’knows’, *that’, ’Sue’, ’laughs’])

recognize(gl, [’Sue’, ’laughed’])

recognize(gl, [’the’, ’student’, ’from’, *the’, ’university’, ’praises’, the’, *beer’, on’, *Tuesday’])
recognize(gl, [’the’, ’student’, ’from’, *the’, ’university’, ’praises’, the’])

recognize(gl, [’Sue’, *knows’, *that’, *Maria’, *laughs’])

OB R R R R R

Adding a timer to our basic recognizer makes it clear that backtracking to find alternative parsers also takes
many steps! The changes to tdp.py are just the lines 6,14,18,31,32,36:

" fele: tdpt.py stabler@ucla.edu
return the rules used in succsesful derivation
with a step-counter (’time’, measured in steps)
nmnn
def tdpstep(g,(i,cs,p)): # compute all possible next steps from (i,cs)
global steps
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]
pl = pl:] # copy of rewrites so far
nextsteps=[]
for (lhs,rhs) in g:
if 1lhs == cs[0]:
#print ’exzpand’,lhs,’->’,rhs # for trace
steps = steps+l
nextsteps.append ((i,rhs+csl,pl+[[1hs]+rhs]))
if len(i)>0 and i[0] == cs[0]:
#print ’scan’,t1[0] # for trace
steps = steps+1l
i1=i[1:]
nextsteps.append((il,csl,pl))
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return nextsteps
else:
return []

def derive(g,ds):
while ds != [1 and not (ds[-11[0] == [] and ds[-1]1[1] == [1):
d = ds.popQ)
ds.extend (tdpstep(g,d))

def parse(g,i):
global steps

steps = 0
ds = [(i,[’s°],[D)]
while ds !'= []:

derive(g,ds)

print ’steps=’,steps

if ds == []:
return ’False’

else:
d=ds.pop()
print ’11=’,d[2]
print ’parse length=’,len(d[2])
ans = raw_input(’another? ’)
if len(ans)>0 and ans[0]==’n’:

return d[2]

# Examples:

# parse(gl,[’Sue’, ’laughs’])

# parse(gl,[’the’, ’student’, ’laughs’])

# parse(gl,[’the’, ’student’, ’praises’, ’the’, *beer’])
# parse(gl,[’Bill’, ’knows’, *Sue’, ’laughs’])

2.8 Conclusions: We have to revise our goal!

The previous section established the following things:

e Computing a list of all parses is not possible for CF grammars in general, since a single string can have
infinitely many parses!

e Even when every string has finitely many parses, computing a list of all parses is not tractable for CF
grammars in general, since there can be exponentially many of them! In fact, this happens in human
languages. . .

e In human languages, given standard assumptions about constituency, no polynomial function of n bounds
the number of parses of strings of length n.

These facts require that we change our idea about our main question, from page[I2 It is not reasonable to ask how
people compute (all) grammatical structures from orthographic or phonetic representations, since it is not plausible
that they do! There are a number of possible responses to this worry. Making our assumptions explicit, consider
these alternatives:

Qla. Since humans cannot map orthographic or phonetic input to complete, explicit analyses, they must use some
more compact representation of (all) those structures. What algorithms can compute those?

Q1b. It is unreasonable to assume that we compute all the structures of the sentences we hear, and it is well known
that people systematically fail to notice many ambiguities in sentences they hear. SO language users must
somehow rank candidate analyses, implicitly (and perhaps probabilistically), and then restrict their attention
to the most probable one(s), in context. What algorithms can do that?

Qlc. Obviously, each language user has limited memory. There must be some particular bound k on the number of
elements that can be remembered at any time in analyzing a sentence — a bound on the parser memory. When

6When computer scientists say that context free grammars can be efficiently parsed, they usually have this kind of idea in mind.
They do not mean that all the parse structures can be listed efficiently. Instead, their parsers output something other than explicit
trees, or explicit lists of rules used in each parse. We will consider such alternatives below, when we study chart parsers and consider
their plausibility as models of human sentence processing.
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the parser reaches that bound, the derivation must just crash, ceasing to be available for consideration[1 So we
might ask: what algorithms do this in a human-like way?

There are many other responses to the basic facts about human sentence recognition, each of which poses slightly
different questions. We will not try to decide among them here. Certain core assumptions are shared by all of them:

(i) parsing involves finding derivations from the grammar (i.e. from some finite memory of linguistic structure),
(ii) to a first approximation, derivations are built up incrementally from left to right

(iii) to a first approximation, meaning is calculated incrementally from left to right

We can focus on achieving these in various ways, postponing decisions about which of Qla-Qlc is the right per-
spective.

7In fact, there are reasons to think that the number of elements that can be remembered depends in part on what those elements are.
Remembering 3 clearly distinct things may be easier than remembering 3 very similar things. This may be one reason that sentences
like these are so difficult:

e Buffalo buffalo buffalo Buffalo buffalo

with the syntax of: [California girls| like [Pacific waves]
e Dogs dogs dog dog dogs

with the syntax of: [Mice (that) cats chase eat cheese|

There is a big literature exploring memory and interference effects of various kinds in parsing [].
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Exercises: Memory requirements for our TD recognizer

Get tdh.py and copy it to tdh(your-initials).py. Then modify the program as follows (small changes!)...

1. Instead of just the steps in the parse, modify the program to also print out the number of states in parser
memory, like this:

([Sue’, laughs’], ['S’])
([Sue’, 'laughs’|, [DP’, "VP’])
(r Sue7 'laughs’], [Name’, "VP’])
([Sue’, 'laughs’], ['Sue’, "VP])
(Plaughs'], ['VP))
([aughs’], ['V7])
([laughs’], ['laughs’])
(I 1)

Here each line has the number of the step and then the number of elements in parser memory at that step.

N O Utk WO
O R K N NN

2. Now make a second change. Instead of printing out just the steps in the proof, print out the number of states
in parser memory and the number of derivations in the backtrack stack just before the current step was taken,
like this:

(I'Sue’, ’laughs’], ['S’])
(['Sue’, ’laughs’], [DP’, "VP’])
(['Sue’, ’laughs’], [Name’, "VP])
(['Sue’, ’laughs’], ['Sue’, "VP’])
([Naughs’], ['VP])

(['aughs’], ['V7])

E[ laughs’], ['laughs’])

(I 1)

Here each line has the number of the step, the number of elements in parser memory at that step (as before),
and then the number of elements in the backtrack stack at each point.

YT W N~ O
R R R NN N -
R R R W=

7 0

We can check this with td.py, since that program lists all the derivations at every point. For example, at the
last step in the parse of Sue laughs, we can see that there are, in fact, 4 derivations in the backtrack stack:

scan laughs
0(,)
( Sue laughs , Bill VP )
2 ( Sue laughs , NP VP )
( Sue laughs , D NP VP )

True

3. Using gl.py and your answer to the previous question:

a. What sentence of 10 words or less requires the most parser memory? That is, find a sentence that, at some
point in calculating one of its parses, has n elements in parser memory for n as high as you can get it. Tell
me what the sentence is and what 7 is in a comment at the bottom of your file tdh(your-initials).py. (I
will check your answer!)

b. In a sentence or two, explain why your answer to the previous question maximizes parser memory use —
again put this in a comment at the bottom of your file tdh(your-initials).py.

c. What sentence of 10 words or less requires the most backtrack memory? That is, find a sentence that, at
some point in calculating one of its parses, has n derivations elements in its backtrack stack for n as high
as you can get it. Tell me what the sentence is, and what n is in a comment at the bottom of your file
tdh(your-initials).py. (I will check your answer!)

d. In a sentence or two, explain why your answer to the previous question maximizes backtrack stack use —
again put this in a comment at the bottom of your file tdh(your-initials).py.

So you will have a modified parser, with 4 short answers to problem 3 at the bottom of the file. Email me your
work by midnight next Wednesday. Monday is Martin Luther King, Jr. day. (If you have trouble, first do the easy
steps 1, 8a, 3b. Then go back to 2, 3¢, 8d. I will give some hints in class too.)
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More exercises: Time requirements for our TD recognizer

*** Not assigned this year! but you can do these for fun if you want ***

4. Modify tdp.py to produce the program tdpt.py that is listed in §2.7.8 above, name it tdpt (YOURINITIALS).py,
and put your name at the top of the file too.
5. At the top of this file, add a grammar with the name g4 with the following rules:
S — aSS
S—e€
6. Use your tdpt.py to see how many steps it takes to find all parses of each of these sentences:
a, aa, aaa, aaaa, aaaaa, aaaaaa, aaaaaaa
Cut and paste the timer counts for each of these sentences into a comment at the bottom of your file.
7. Also, in the same comment at the bottom of your file, answer this question: For which values of n does the
number of steps required to find all parses exceed 2”7 Briefly defend your answer as persuasively as you can.
8. Optionally: sketch a proof that establishes the correctness of your answer to 7.
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Chapter 3 Beam instead of backtrack, and more alternatives

A beam parser is one where the search is restricted to a finite collection, a finite ‘beam’ of options at each point
[1T, 10y [7), [, 13, 12, 8]. One variety of these strategies is called ‘k-best’: the search is limited to the k most probable
parses. A simple beam parser is introduced here. It provides a kind of top-down analysis that can ‘handle’ left
recursion, in a sense, though it does so in a manner that we will see is less than satisfactory. The basic idea is
simply to always evaluate the simplest alternative parse (or the parse that is ‘most probable’ in some other sense),
within a bound set by a parameter k. Any parses with probability less than k are discarded.

3.1 The TD beam recognizer

The data structure we need for the beam can be thought of as a sorted list, sorted by probability, from which we
always pop one of the elements with highest probability. Since this list must be sorted, it is not a stack, but is
sometimes called a priority queue or heapl] The other ingredient we need is some way of determining the probability
of each parse. We will return to this question later, but for now let’s just say that each option is equally likely. That
is, whenever a parse with probability p can expand in n ways, we assign each of the n possible parses probability
p/n. And in order to make sure that the beam stays a reasonable size, we will set a finite bound & on the minimum
probability parse that we want to consider.

TopP-DOWN BEAM CF RECOGNITION(G, i, k)

0 beam=[(1.,i,9)], a priority queue, where S is the start category
1 while beam# [| and max(beam)=#(p,[],[]) (any p):

2 (p0,i0,cs0)=pop(beam), the maximum element

3 nextsteps=[d| (10,cs0) =44 d|

4 p1:p0*m

5 if p>k:

6 for each (il,csl) in nextsteps, push (pl,il,csl) onto beam
7  if beam==[| then False else True

where the steps =4 are unchanged:

input, Xa | w input, wa
(expand) ————— if X — (scan) ——
input, Sa input, «

If k£ is negative, then all derivations will be kept in the beam, as was done in top-down recognition. But the beam
recognizer always expands one of the maximum probability parses, so unlike the top-down recognizer, the beam
recognizer will always terminate on a grammatical input. Like the top-down parser, though, if & is negative, the
recognizer can fail to terminate on ungrammatical inputs if the grammar has left recursion. (And even with positive
k, with some unusual left recursive grammars, the recognizer fail to terminate — In what cases can this happen?)

3.2 Implementing the TD beam recognizer

Python grovides a priority queue, a heap. To use this data structure, we load the basic capabilities with the
command:

>>> import heapq

That command adds the heapq library, which allows us to create heaps. Any list can be converted into a heap:

1The implementation of these structures is interesting, a standard topic in classes on data structures. See, for example, [T} §6].
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>>> 11=[4,1,3,2]
>>> heapq.heapify(11)

Now we can pop the minimum element, and push new elements:

>>> x = heapq.heappop(11)
>>> x
1

>>> 1
[2, 4, 3]

>>> y = heapq.heappop(11)
>>> y

2
>>>
>>>
3
>>> 11

[4]
heapq.heappush(11,-3)
>>> 11

[-3, 4]
heapq.heappush(11,5)
>>> 11

[-3, 4, 5]

1

x = heapq.heappop(11)
X

We can use this for our probabilities, but since we want to pop the maximum probability elements, we keep the
probability negated, and we let represent our derivations with triples

(—probability, remaining input, predicted categories).
The expand and scan steps can remain unchanged, but whenever there are n possible next steps from a parse with

probability p, we assign each possibility p/n.
In the following implementation, the function tdstep is unchanged from the top-down parser td.py. The only
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changes are in recognize, especially in the lines 25, 27 and 31-36:

mwn

mmn

file: tdb.py
4 simple top-down beam CF recognizer.
The minor changes from td.py are labeled "for beam"”

import heapq

def

def

tdstep(g, (i,cs)): # compute all possible next steps from (i,cs)
if len(cs)>0:
csl=cs[1:] # copy of predicted categories except cs[0]
nextsteps=[]
for (lhs,rhs) in g:
if lhs == cs[0]:
print ’expand’,lhs,’->’,rhs # for trace
nextsteps.append ((i,rhs+csl))
if len(i)>0 and i[0] == cs[0]:
print ’scan’,i[0] # for trace
nextsteps.append((i[1:]1,cs1))
return nextsteps
else:
return []

recognize(g,i,k):
beam = [(-1.,i,[’S’]1)] # probability 1., negated
heapq.heapify(beam) # make list into a "min-heap"”
while beam !'= [] and not(min(beam) [1]==[] and min(beam) [2]==[]):
(prob0,i0,cs0) = heapq.heappop(beam)
print ’popped’, (prob0,i0,cs0) # for trace
nextsteps = tdstep(g, (i0,cs0))
print ’next steps=’,nextsteps
if len(nextsteps) > 0:
probl = prob0/float(len(nextsteps))
if -(probl) > k:
for (il,csl1l) in nextsteps:
heapq.heappush(beam, (probl,il,cs1))
print ’pushed’, (probl,il,csl) # for trace
print ’|beam|=’,len(beam) # for trace
if beam == []:
return False
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3.3. IMPLEMENTING THE TD BEAM PARSER

else:
return True

Ezamples:

recognize(gl, [’Sue’, *laughs’],0.05)
recognize(gl, [’Sue’, *laughs’],0.5)

recognize(gl, [’Bill’, ’knows’, *that’, ’Sue’, ’laughs’],0.10)
recognize(gl, [’Bill’, ’knows’, *that’, ’Sue’, ’laughs’],0.01)

HH oW R R W
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3.3 Implementing the TD beam parser

It is easy to make the same changes to the top-down parser tdp.py to get this top-down beam parser:

" fele: tdbp.py stabler@ucla.edu
beam parser
nmnn

import heapq

def tdpstep(g,(ws,cs,p)): # compute all possible next steps from (ws,cs)
if len(cs)>0:
csl=cs[1:] # copy of predicted categories ezcept cs[0]
pl = pl:] # copy of rules used so far
nextsteps=[]
for (lhs,rhs) in g:
if 1lhs == cs[0]:
#print ’expand’,lhs,’->’,rhs # for trace
nextsteps.append((ws,rhs+csl,pl+[[1hs]+rhs]))
if len(ws)>0 and ws[0] == cs[0]:
#print ’scan’,ws[0] # for trace
wsl=ws[1:]
nextsteps.append((wsl,csl,pl))
return nextsteps
else:
return []

def derive(g,beam,k):
while beam != [] and not (min(beam)[1] == [] and min(beam) [2] == []):
(prob0,ws0,cs0,p0) = heapq.heappop (beam)
nextsteps = tdpstep(g, (ws0,cs0,p0))
#print ’‘nextsteps=’,nextsteps
if len(nextsteps) > 0:
probl = prob0/float(len(nextsteps))
if -(probl) > k:
for (wsl,csl,pl) in nextsteps:
heapq.heappush(beam, (probl,wsl,csl,pl))
#print ’pushed’, (probl,wsl,csl) # for trace
#print ’/beam/=’,len(beam) # for trace

def parse(g,ws,k):
beam = [(-1.,ws,[’S’],[])]
heapq.heapify(beam) # make list of derivations into a "min-heap"
while beam !'= []
derive(g,beam,k)
if beam == []:
return ’False’
else:
d=heapq . heappop (beam)
print ’11=’,d[3]
ans = raw_input(’another? ’)
if len(ans)>0 and ans[0]==’n’:
return d[3]

Ezamples:

parse(gl, [’Sue’, ’laughs’],-1.)

parse(gl, [’Bill’, ’knows’, *that’, *Sue’, ’laughs’],-1.)
parse(g0,[’Sue’, ’laughs’],0.01)
parse(g0, [’Sue’, ’laughs’],0.0001)

parse(g0, [’the’, ’student’, ’laughs’],0.0001)

parse(g0, [’the’, ’student’, ’laughs’],0.000001)
parse(gOmin, [’the’, ’kind’, ’student’, ’laughs’],0.0000001)

oW R W R R R R
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3.4 Implementing the original grammar, with left recursion

Since the top-down beam parser can now handle left recursion, we can go back to the original grammar from
Fromkin, which we listed on page

- fele: g0.py

our first grammar. It has left recursion and empty productions.
nnn

g0 = [(°s’,[’DP?,?VP’]), # categorial rules
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(’op’, [’D?,’NP’]),
(’pp?, [’NP’]),

(’DP’, [’Name’]),

(°DP’, [’Pronoun’]),
¢ne2, [°N°]),

¢wnp>, [’N2,PP’]),
Cve, [°v0]),
¢ve>,[’v’,°DP’]),
¢ve, v, PP’ ]),
¢ver, v, 2 CP’]),
¢ve, v ,°vP2T),
¢ve>, [°V>,°DP’, PP 1),
¢ver, [°V>,°DP’,°CP 1),
¢ve’, [V, DP?, VP ]),
¢pp>,[’P]),
¢pp>,[’P?,°DP’]),
¢ap’, A1),

(AP, [PA>,°PP’]),
(¢cp,°C,78°]),
(’AdvP’, [’Adv’]),
(’NP’, [’AP’,’NP’]),

(NP’ , [°NP’,°PP’]), # left rec
ONP?,[’NP’,’°CP’1), # left rec

(>vP’, [?AdvP’, VP?]),
¢vp>,[°VP’,°PP’]), # left rec

(?AP?, [’AdvP’,?AP’]),
(°’D’,[’D?,’Coord’,’D’]), # left rec
v ,[°V’,’Coord?,’V?]), # left rec
(°N’,[’N?,’Coord’,’N’]1), # left rec
(°A°,[’A’,’Coord?,’A’]), # left rec
¢pP’,[’P’,’Coord?’,’P’]), # left rec
(°c’,[’C?,’Coord?,’C’1), # left rec
(’Adv’,[’Adv’,’Coord’,’Adv’]), # left rec
(>vp’,[’VP’,’Coord’,’VP’]), # left rec
ONP?, [’NP’,’Coord’,’NP’1), # left rec
(’DP’, [’DP’,’Coord’,’DP’]), # left rec
(AP’ [’AP’,’Coord’,’AP’1), # left rec
(’PP’, [’PP’,’Coord’,’PP’1), # left rec

(?AdvP’, [?AdvP’,’Coord’,’AdvP’]), #

(’s’,[’S?,’Coord?,?S°]), #
(’cp’,[’CP’,?Coord’,’CP’]),

left rec
# left

left rec

rec

(°D’,[’the’]), # now the lezical rules

(’D’,[’a’]),
(’D?,[’some’]),
(’D’,[’every’]),
(’D’,[’one’]),

D, [’two’]),
(’A’,[’gentle’]),
(’A’,[’clear’]),
(’A’,[’honest’]),
(’A’, [’compassionate’]),
A, [Pbrave’]),
A, [’kind’]),

(°N’, [’student’]),
(°’N’, [’teacher’]),
N, [Dceity’]),

(°N?, [Puniversity’]),
(’N?, [’beer’]),

C’N’, [’wine’]),

(°v’, [’laughs’]),
(°v?,[’cries’]),
(v, [’praises’]),
C°Vv’,[’criticizes’]),
v, [’says’]),

C°v’, [’knows’]),
(’Adv’, [*happily’]),
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3.5. ASSESSMENT: TIME, SPACE, AND NONDETERMINISM

(’Adv’, [’sadly’]),
(’Adv’, [’impartially’]),
(’Adv’, [’generously’]),
(’Name’, [’Bil1°]),
(’Name’, [’Sue’]),
(’Name’, [’Jose’]),
(’Name’, [’Maria’]),
(’Name’, [’Presidents’,’Day’]),
(’Name’, [’Tuesday’]),
(’Pronoun’, [’he’]),
(’Pronoun’, [’she’]),
(’Pronoun’, [?it’]),
(’Pronoun’, [’him’]),
(’Pronoun’, [*her’]),
¢p’,[?in’1),
CP’,[’on’]),
¢p2,[’with’]),

e, Dby,
Cpr,[to’]),

P, [’from’]),
¢c’,[’that’]),
¢c’,[0), # empty production!
(’°C?, [’whether’]),
(’Coord’,[?and’]),
(’Coord’, [?’or’]),
(’Coord’, [’but’])]
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With this grammar, we get sessions like this:

>>> from tdbp import *

>>> from gO import *

>>> parse(g0, [’Sue’,’laughs’],0.0001)

11= [[’Ss’, °DP’, ’VP’], [’°DP’, °’Name’], [’Name’, ’Sue’],
another[?] y

’False’

>>> parse(g0, [’the’, ’student’,’laughs’],0.0001)

’False’

>>> parse(g0, [’the’,’student’,’laughs’],0.00001)

’False’

>>> parse(g0, [’the’,’student’,’laughs’],0.000001)

11= [[’S’, ’DP’, ’VP’], [’DP’, ’D’, ’NP’], [’D’, ’the’],
another[?] n

e,

e,

)V)] s

)N)] s

[,V, s

[,N, s

’laughs’]]

’student’],

3.5 Assessment: Time, space, and nondeterminism

The situation is only slightly changed from the TD parser, so we list the basic properties quickly here.

1. The rules =4 are sound and complete, as before — see §2.7.11

e,

)V)] s

[°’v’, ’laughs’]]

2. The structures parsed at each step are connected, allowing for incremental interpretation, as before — see §2.7.21

3. This method develops one parse at a time — the maximum probability parse in the beam, at each step — and so
is similar to the top-down recognizer in suggesting a treatment of ‘garden path’ sentences — see 2.7.3]

4. Right branching derivations only require a finite amount of parser memory, no matter how long the input is —

see §2.7.01

5. Left branching derivations can require unbounded amounts of parser memory, increasing with the length of the

input — see §2.7.4]

6. Lookahead can reduce indeterminacy, but not effectively for languages like English. English is not LL(k) for any

k — see 7.7

7. And of course, English has intractable ambiguity, no matter what recognizer you use — see §2.7.1

The new thing is this:

8. Given a fixed, positive 0 < k < 1, most left recursive grammars will not cause non-termination. (But see exercise

6 on page B0 below.
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3.6 More alternatives, and conclusions

TD parsing has lots of nice properties, and the beam parser shares many of them. And certain cases of non-
termination and intractability could be avoided with this approach.

But the beam parser is still exploring many parses which a ‘smarter’ parser might reject, e.g. parses that could
have been avoided by looking one word ahead, or parses that could have been avoided by better judging plausibility
in context. To take just one example: Do we really predict all the nouns (within suitably generous probability
bounds) and then check our predictions? Not likely! And do we really want a parser to have to predict how many
modifiers a phrase has, before seeing any of the phrase? That seems unlikely too. There are many other search
methods: simple breadth-first, A* [9], Hale’s adaptive methods [5], and more. And any of these algorithms could be
implemented in ‘hardware’ that provides more or less parallelism, complicating the relation between the number of
steps required (‘time’ in the computer scientists’ sens) and the real time required by the hardware (and in particular,
by any neurophysiological implementation). We should keep the basic questions about search, the questions about
how to handle indeterminacy, in mind as we consider other parsing strategies.

Exercises: Time requirements for our TDB recognizer

Due by the end of the day on Monday (i.e. by midnight) January 28.

1. Modify tdbp.py to produce the program tdbpt.py in the same way that we modified the simple top-down parser
in §277.8] (in the updated version of the week 2 notes). Name your file tdbpt(YOURINITIALS).py, and put your
name at the top of the file too.

2. At the top of this file, add a grammar with the name g4 with the following rules:

S — aSS
S—e

3. Use your tdbpt.py to see how many steps it takes to find all parses of each of these sentences, using g4:
a, aa, aaa, aaaa, aaaaa, 4aaaaa, aaaaaaa

Cut and paste the step counts for each of these sentences into a comment at the bottom of your file.

4. In the same comment at the bottom of your file, answer this question: For which values of n does the number
of steps required to find all parses of the sentence a™ exceed 2™7

5. Optionally: Sketch a proof that establishes the correctness of your answer to 4.

6. Optionally: Can you design a grammar which can cause this parser to be nonterminating when k£ < 07 Present
the grammar and explain the problem.

7. A prominent tradition in psycholinguistics holds that typical sentence processing involves development of a single
analysis, where that parse is subjected to ‘reanalysis’ when required. For example, Frazier and Clifton say:

Serial theories of sentence processing specify that the processor pursues just a single analysis of a sentence until that
analysis becomes implausible or untenable, at which point revision of the first analysis occurs. .. Here it is argued
that revision cost cannot be calculated in purely structural terms. . . It is also argued that a theory of revisions must
include a Minimal Revisions principle. .. [3| p.193]

In beam search, the most probable parse is developed at each So then, is a beam processor a serial model with
reanalysis? Compare this idea to Frazier and Clifton’s or other psycholinguistic proposals about reanalysis [2] 4],
etc|]. Staub’s [I4] proposal is especially interesting: he suggests that we see the influence of discarded parses at
later stages of processing. Is there an alternative interpretation of his results?
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Chapter 4 Bottom-up CF parsing

Bottom-up parsing is sometimes called shift-reduce parsing, since its basic operations are shift and reduce. It is also
sometimes called LR, because it proceeds left-to-right, building a rightmost parse in reverse [I5], but LR parsing
often refers to BU parsing done with a “chart”, as we will discuss in §7.3

4.1 BU backtrack recognition

The algorithm for BU recognition deals with non-determinacies in the same way that the TD recognizer does (i.e.
by keeping a list of all choices), but the parsing steps are different. In TD recognition, everything is predicted
and then scanned, but in bottom-up parsing everything except the prediction of a complete sentence is heard first,
shifted, and then the heard things are reduced to categories by using the rewrite rules backwards. There is one
special case of the reduce rule, called reduce-complete, which applies only at the last step of the recognition to fulfill
the prediction of the S. To indicate which categories (and words) in the parser memory have been found, keeping
them distinct from the categories (and words) that have been predicted, let’s put the found categories into tuples.
That is, when we have heard the word Sue, we put (Sue) into the stack, and when we have heard the category DP
we put (DP) into the stack[]

BOTTOM-UP BACKTRACK CF RECOGNITION(G, ws)
0 ds=[(ws,S))] where S is the start category

1 while ds# [] and ds[0]#£([],[]):

2 ds=[d| ds[0] =, d] + ds[1]

3 if ds==[] then False else True

where the steps =, are defined as follows:

input, (X,)...X1)«a

d fX—=X;...X,
(reduce) input, (X)a !
input, (X,) ... (X1) X«
(reduce-complete) P ( ). (%) ifX—X;...X,
mput,
(shift) w input, o

input, (w) «

With these rules, we get derivations like the following. (This derivation is calculated by buh.py from §4.2] below,
and so python puts an extra comma into the completed categories.)

(PSue’, laughs’], ['S])
([laughs’], [(Sue’,), 'S7)
([Naughs’], [(Name’,), ’S’])
([laughs'], ['DP",), S

(I [Claughs’), (DP"), 'S7)
(I [(V,), (DP'), ST)

(I [(VP"), (DP"), 'S
(Il D

N O UL Wi~ O

IThis very slightly non-standard presentation of the bottom-up recognizer, with a reduce-complete rule, will set the stage for the
important generalization of the method later.
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54 CHAPTER 4. BOTTOM-UP CF PARSING

The implementation is an easy change from td.py, simply replacing the top-down rules by the bottom-up
ones:

nnn f,z:le: bu-py
a simple bottom-up backtrack CF recognizer
nnn
def showDerivations(ds): # pretty print the ’backtrack stack’
for (n,(i,cs)) in enumerate(reversed(ds)):
print n,’(’,
for w in i:
print w,
print 7,7,
for ¢ in cs:
print c,
print °)?
print 7----—--——- ’

def revTupled(rhs):
tmp = rhs[:]
tmp.reverse()
return [(x,) for x in tmp]

def bustep(g,(i,cs)): # compute all possible next steps from (i,cs)
nextsteps=[]
for (lhs,rhs) in g
if len(rhs) < len(cs) and cs[:len(rhs)+1]==revTupled(rhs)+[1lhs]:
print ’reduce-complete’,lhs,’->’,rhs # for trace
nextsteps.append((i,cs[len(rhs)+1:]1))
if len(rhs) <= len(cs) and cs[:len(rhs)]==revTupled(rhs):
print ’reduce’,lhs,’->’,rhs # for trace
nextsteps.append((i, [(1hs,)]+cs[len(rhs):]1))
if len(i)>0:
print ’shift’,i[0] # for trace
i1=i[1:]
nextsteps.append((il, [(i[0],)]+cs))
return nextsteps

def recognize(g,i):

ds = [(1,[’S°])]

while ds '= [] and ds[-1] '= ([1,[]):
showDerivations(ds) # for trace
d = ds.pop(Q)
ds.extend(bustep(g,d))

if ds == []:
return False

else:
showDerivations(ds) # for trace
return True

Ezamples:

recognize(gOnoe, [’Sue’, *laughs’])

recognize(gOnoe, [’Sue’, *laughs’, *on’, *Tuesday’])

recognize(gOnoe, [’the’, ’student’, ’from’, *the’, ’university’, ’praises’, the’, beer’, ’on’, ’Presidents’, Day’])
recognize(gOnoe, [*the’, ’student’, ’from’, the’, ’untversity’, ’praises’, *the’])

recognize(gOnoe, [’Sue’, ’knows’, *that’, ’Maria’, ’or’, ’Bi11’, *laughs’])

oW R W R W

Notice that we cannot allow an empty category with this standard backtracking BU recognizer, because it can
cause non-termination. For example, with the rule C—[], we can reduce to find any number of C’s at any point
in any parse. For now, we simply eliminate that rule. Left recursion, on the other hand, no longer causes non-

termination. So we add the left recursive rules from our original grammar but leave out the empty production (and
a few other rules, for simplicity):

" file: gOnoe.py
a grammar with left recursion, but no empty productions
nmnn
gOnoe = [(’S’,[’DP’,’VP’]), # categorial rules
(’DP’ s [’D’ s ’NP’]),
¢’pop’, [°NP°]),
(°DP’, [’Name’]),
(°DP’, [’Pronoun’]),
()NP) s [)N)]),
(7VP7 s [7v7]),
()VP) s [)V) . )DP)])’
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39
40
41
42
43
44
45
46
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4.1. BU BACKTRACK RECOGNITION

(ve,

[,V, 2

’CP’]),

Cvp?, [V, 2vP°]),

(e,

[,V, 2

’DP’,’PP’]),

(’vP>,[’V?,’DP’, VP’1),
(PP, ['P°1),

(7PP)

0P,

’DP’]),

(ap’,[°A°]),

(,AP’ )

[,A, 2

PP’]),

(cp2,[7C7,5°]),
(?AdvP’, [’Adv’]),

(e,
(e,

[’AP’,°NP’]),
[°NP*,’PP’]), # left rec

(°NP’,[°NP?,°CP’]), # left rec

(e,

[’AdvP’,°VP’]),

¢ve’,[°VvP?,°PP’]), # left rec
(PAP’, [’AdvP’,’AP’]),

(,D,,

(’A>,[’A°,’Coord’,’A’]),
¢p’,[’P?,’Coord’,’P’1),

[°’D’,’Coord’,’D’]), #
¢vy,[°V’,’Coord?,’V?]), #
(°N’,[’N?,’Coord’,’N’]1), # left
#
#

left
left

left
left

(’c’,[’C?,?Coord?,?C’1), # left
(’Adv’,[’Adv’,’Coord’,’Adv’]),
¢vp’,[’VP’,’Coord?,’VP’]), # 1

(e,
(’DP?,

[’NP’,?Coord’,’NP’]), # 1
[’DP’,?Coord’,’DP’]), # 1

(’AP’,[’AP’,’Coord’,’AP’1), # 1
(’PP’, [’PP’,’Coord’,’PP’]), # 1

(?AdvP’, [?AdvP’,’Coord’,’AdvP’]),

(’s’,[’8?,?Coord’,’8°1), # left

(’cp’,[’°CP?,’Coord’,’CP*]),
(’D?, [’the’1),

(7D7’[,a,])’

(°D?, [?’some’]),

(D, [’every’]),
(°D?, [one’]),

¢D’, [’two’]),
(’A’,[’gentle’]),
(A7, [’clear’]),
(’A’, [’honest’]),
(’A’, [’ compassionate’]),
(°A?, [’brave’]),
(’A?,[’kind’]1),

(°N’, [’student’]),
(°N’, [’teacher’]),
N, [Peity’]),

CN?, [university’]),
¢N?, [’beer’]),

N, [Pwine’]),

v, [’laughs’]),
v, [’cries’]),
CVv’, D’praises’]),
v, [criticizes’]),
v, [’says?’]),

(’v?, [’knows’]),
(’Adv’, [’happily’]),
(’Adv’,[’sadly’]),
(’Adv’, [’ impartially’]),
(’Adv’, [’generously’]),
(’Name’, [’Bill’]),
(’Name’, [’Sue’]),
(’Name’, [?Jose’]),
(’Name’, [’Maria’]),
(’Name’, [’Presidents’,’Day’]),
(’Name’, [’Tuesday’]),
(’Pronoun’,[’he’]),
(’Pronoun’, [’she’]),
(’Pronoun’,[’it’]),
(’Pronoun’, [’him’]),
(’Pronoun’, [’her’]),
¢p’,[?in’]1),
CP’,[’on’]),
CPp’,[with’]),
(’P’,[’by’]),
(7P7,[7t07]),

rec
rec
rec
rec
rec
rec

# left rec

eft
eft
eft
eft
eft

rec

rec
rec
rec
rec
rec

# left rec

# left rec
# now the lextical rules
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¢p’,[from’]),

¢c’,[’that’]),

# (°C°,[]), # no empty productions allowed in BU parsing
(°C’, [’whether’]),

(’Coord’, [?and’]),

(’Coord’, [?or’]),

(’Coord’, [’but’]1)]

Now we can get sessions like this:

>>> from gOnoe import *

>>> from bu import *

>>> recognize(gOnoe, [’Sue’, ’laughs’])
0 ( Sue laughs , S )

shift Sue

0 ( laughs , (’Sue’,) S)

reduce Name -> [’Sue’]

shift laughs

0 (, (Plaughs’,) (’Sue’,) S )
1 ( laughs , (’Name’,) S )

reduce V -> [’laughs’]
o (¢, Cv,) (’Sue’,) S)
1 ( laughs , (’Name’,) S )

reduce VP -> [’V’]

0 (C, CCvp’,) (°Sue’,) S)
1 ( laughs , (’Name’,) S )

reduce DP -> [’Name’]

shift laughs

0 (, (Plaughs’,) (’Name’,) S )
1 ( laughs , (°DP’,) S )

reduce V -> [’laughs’]
o (, Cv,) (PName’,) §)
1 ( laughs , (°DP’,) S )

reduce VP -> [’V’]

0o, Cvp’,) (°Name’,) S )
1 ( laughs , (°DP’,) S )

shift laughs

0 (, (’laughs’,) (°DP’,) S )

reduce V -> [’laughs’]
o ¢, Cv,) (°DP’,) S )

reduce VP -> [’V’]

o (¢, (vp>,) (°DP’,) S )

reduce-complete S -> [’DP’, ’VP’]

reduce S -> [’DP’,
0 C, (s,) 8)

7VP7]
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4.2 BU backtrack parsing (complete derivations)

BOTTOM-UP BACKTRACK CF PARSING(G, ws)

0 ds=[(ws,S,(ws,S))] where S is the start category
1 while ds## [] and ds[0]#£([],[]):

2 ds=[d| ds[0] =pun d] + ds[1:]

3 if ds==[] then False else True

where the steps =, are defined as follows:

input, (X,,)...Xy)a, b,
(reduce) - - ifX—X;...X,
input, (X)a, h(input, (X)a)

input, (X,)...(X1)Xa,h .
(reduce-complete) - - HX —-X;...X,
input, «, h(input, «)

winput, a, h

shift
(shift) input, (w)a, h(input, wa)

The implementation is also an easy change from the bu.py. With buh.py code, we get sessions like this one (we
have removed many output lines):

>>> from gOnoe import *

>>> from buh import *

>>> parse(gOnoe, [’Bill’, ’knows’,’Sue’, ’laughs’])
shift Bill

reduce Name -> [’Bill’]

reduce VP -> [’V’, ’DP’, ’VP’]

reduce-complete S -> [’DP’, ’VP’]

reduce S -> [’DP’, °VP’]

([’Bill’, ‘’knows’, ’Sue’, ’laughs’], [’S’])
([’knows’, ’Sue’, ’laughs’], [(’Bill’,), ’S’])
([’knows’, ’Sue’, ’laughs’], [(°Name’,), ’S’])
([’knows’, ’Sue’, ’laughs’], [(°DP’,), ’S’])
([’Sue’, ’laughs’], [(°knows’,), (°DP’,), ’S’1)
([’Sue’, ’laughs’], [(°V’,), (°DP’,), ’S’])
([’laughs’], [(°Sue’,), (°V’,), (°DP’,), ’S’])
([’laughs’], [(°Name’,), (°V’,), (°DP’,), ’S’])
([’laughs’], [(C°DP’,), (°V’,), (°DP’,), ’S’])
(01, [Claughs’,), (°DP’,), (°V’,), (°DP’,), ’S°1)
10 @@, reve,), C¢op’,), Cv’,), (°DP’,), ’S’1)
i1, [¢ve’,), Cop’,), Cv’,), (°DP’,), ’S’1)
12 (0, [Cve,), (°DP’,), ’S’])

13 ([1, [

more[?] y

reduce-complete S -> [’DP’, ’VP’]

reduce S -> [’DP’, ’VP’]

shift laughs

OO~ WN-O

reduce VP -> [’V’]
reduce S -> [’DP’, °VP’]
False

Notice that the string [’Bill’,’knows’,’Sue’,’laughs’] now has only one derivation, while on page we
noticed that with the grammar gi.py it had two derivations. It has one now, because we removed the empty
production for the complementizer C. But the sentence [’Bill’,’praises’, ’the’,’student’, ’on’, ’Tuesday’]
now has 4 derivations! The new derivations come from the left recursive rules that allow the PP to modify either
the NP or the VP, and we still get the previous two derivations with the PP as complement of N or of V. And
again, if you check, you will see that the number of steps in each derivation is exactly the number of nodes in the
corresponding derivation tree.

4.3 BU backtrack parsing (collecting rules)

We could get the whole derivation tree from the history, but it is more convenient to use a smaller representation:
the list of rules used in the derivation. A very minor change in the previous program achieves this:
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BOTTOM-UP BACKTRACK CF PARSING (G, ws)

0 ds=[(ws,S,[])] where S is the start category
1 while ds# [] and ds[0]#£([],[]):

2 ds=[d| ds[0] =pup d] + ds[L:]

3 if ds==[] then False else True

where the steps =, are defined as follows:

input, (X,)...(X1)a, h .
(reduce) - X —X;...X,
input, (X)a, h(X = X;...X,)

input, (X,)...(X1)Xa, h
input, o, h(X = X;...X,,)

itX =+ X;...X,

(reduce-complete)

winput, a, h
(shift) ————
input, (w)a, h

The implementation is easy, and with bup.py we get sessions like this one:

>>> from gOnoe import *

>>> from bup import *

>>> parse(gOnoe, [’Sue’, ’laughs’])

lr= [[’Name’, ’Sue’], [’DP’, °’Name’], [’V’, ’laughs’], [’VP’, °V’], [’S’, °DP’, ’VP’]]
another[?] n

[[’Name’, ’Sue’], [’DP’, ’Name’], [’V’, ’laughs’], [’VP’, °V’], [’S’, ’DP’, ’VP’]]
>>>

4.4 From LR rules to derivation trees in list format

The conversion from rules used in LR order to derivation trees is similar to the conversion from LL rules described
in §241 The code is not too hard, but trickier than things we have done so far so I will not try to explain it now.
It is enough to be able to use it, and that’s easy:

mnmwn l,r.Zdt‘py
convert LR list of rules to list-format tree

We will assume that = is a nonterminal <ff there is no rule rewriting <t.
We assume that lezical rules have only lezical items on rhs.

Non-lexical rules have mo lexical ttems on rThs.

Empty rhs is treated as the empty sequence of lexzical items, as usual.
nnn

from gOnoe import *

def nonterminal(g,x):
for (lhs,rhs) in g:
if lhs==x:
return False # breaks from loop
return True

def lexical_rule(g,r):
if len(xr[1:]1)==0:
return True
else:
return nonterminal(g,r[1])

def 1lr2dt(g,lr): # for top call, tmp should be []
if isinstance(lr,list) and len(lr)>0:

t=1r.pop()
if lexical_rule(g,t):
return t

else: # if 4t 4is nonlexical
for i,x in enumerate(reversed(t[1:]1)):
t[len(t)-i-11=1r2dt(g,1lr) # recursive def most natural, and not too deep
return t
else:
return 1lr

""Mexzample:
irl = [[’Name’, ’Sue’], [’DP’, ’Name’], [’V’, ’laughs’], [’VP’, °V’], [’S’, ’DP’, °’VP’]]
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lr2dt (gOnoe,lr1[:])

from pptree import *

from bup import *

pptree(0,1r2dt (g0noe,parse(gonoe, [’Sue’, ’laughs’])))

pptree(0,1r2dt (g0noe,parse(gonoe, [*Sue’, ’laughs’, on’, ’Presidents’, *Day’])))

from list2nltktree import *

list2nltktree(lr2dt(gOnoe,parse(gOnoe, [’Sue’, *laughs’, ’on’, ’Tuesday’]))).draw()

list2nltktree(lr2dt (gonoe,parse(gonoe, [’Sue’, ’laughs’, ’and’, ’cries’]))).draw()
list2nltktree(lr2dt(gOnoe,parse(gOnoe, [’the’, *student’, with’, ’Sue’, ’knows’, *that’, Bill’, *laughs’, ’on’, ’Presidents”’,’
list2nltktree(lr2dt(gOnoe,parse(gOnoe, [’the’, *student’, *with’, ’Sue’, ’knows’, ’or’, ’says’, that’, ’Bt1ll’, ’laughs’, on’, ’P

mmn

With this code, we get sessions like this one:

>>> from gOnoe import *

>>> from bup import *

>>> from lr2dt import *

>>> from pptree import x*

>>> 1r2dt (gOnoe,parse(glnoe, [’Sue’,’or’,’Bill’, ’laughs’]))

lr= [[’Name’, ’Sue’], [’DP’, ’Name’], [’Coord’, ’or’], [’Name’, ’Bill’],

[°’DP’, ’Name’], [’DP’, °DP’, ’Coord’, ’DP’], [’V’, ’1aughs’], [ovpr, °Vv°],

[’S’, ’DP’, ’VP’]]

another[?] n

[’s’, [’DP’, [’DP’, [’Name’, ’Sue’]], [’Coord’, ’or’], [’DP’, [’Name’, ’Bill’]]],
[over, [V, ’laughs’]]]

>>> pptree(0,1lr2dt (gOnoe,parse(glnoe, [’Sue’, ’laughs’,’on’,’Tuesday’]1)))

lr= [[’Name’, ’Sue’], [’DP’, °’Name’], [’V’, ’laughs’], [’VP’, °V’], [’P’, ’on’],
[’Name”’, ’Tuesday’], [’DP’, °’Name’], [’PP’, °P’, °DP’], [’VP’, °’VP’, ’PP’],
[’S’, ’DP’, ’VP’]]

anotherf?| n

DP
Name
Sue
VP
VP
A
laughs
PP
P
on
DP
Name
Tuesday

>>>

4.5 BU beam parsing

We could easily implement BU beam parsing too, but let’s stop here with the BU ideas for now.

4.6 Assessment: time, space, nondeterminism

We have seen that getting from a BU recognizer to a parser is fairly easy: we simply record the steps in the
derivation, in a way which has no influence on the course of the derivation but only on the output. And now
that we have parsers, it is easier to see, as scientists or formal-language-theorists, what is going on in bottom-up
recognition.

4.6.1 Predictiveness and incrementality

Although we have only printed out tree representations at the end of a parse, it is clear that we could have formulated
the tree representations built at every step. When we do that, we see that, at many points, the stack has parts of
the derivation which are not connected to the root or to each other by rules that have already been used.

= picture coming <«
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4.6.2 Right branching derivations, regularity, and space

Among the grammars that the BU recognizer can handle are some that define only regular languages. In particular,
we know that if a grammar has only right branching (or only left branching), the language it defines is regular. A
regular language is one that can be recognized with only finite memory, so let’s explore how much memory the BU

recognizer needs for regular languages, as we did for the top-down recognizer.
onsider again a simple grammar that generates only 1 string, with a simple right branching derivation:

" file: g2noe.py
this grammar has no empty productions
parse(gznoe’ [;b ;, ’b :, ’b :, ’b :, ’b :’ ’b ;, }b}’ ’b ;, ’b }’ }b}, ’b ;])
nwin
g2noe = [(’S?,[’B’,’B0°1),
(’BO’,[’B’,’B1°]),
(’B1°,[’B*,’B2’]),
(’B2°,[’B’,’B3°]),
(’B3>,[’B’,’B4°]),
(’B4,[’B’,’B5°]),
(’B5>,[’B’,’B6°]),
(’B6°,[’B’,’B7°]),
(’B7°,[’B’,’B8’]),
(’B8>,[’B’,’B9°1),
('B9”, ['B’]),
CB>, b’ D]

If we look at the derivation tree for the only sentence in this language, we see that it has 33 nodes:

This sentence is accepted on a long right branch. Watch the parser memory use in the following derivation:

>>> from buht import *

>>> from g2noe import *

>>> parse(g2noe,[’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’])
steps= 6142

([;a:’ ’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ) s
([’b’, ’C’, ’d’, 767, 7f7, 7g7, ’h’, ’i’, ) s
([’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ’i’, ) s ’k’], [(’A’,), ’S’])

([c2, a2, ver, 282, 2g2, 2B, 282, 757, k], [0D2,), COR,), °S])

([’C’, ’d’, )e)’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’B’,), (’A’,), 757])

(Dd>, ver, £, 2g2, *h2, @2, 230, ko], [Cc), OB,), CA%,), °S°])

(Da>, ver, £, 2g2, *h2, 2iv, 232, k], [0C,), CB,), CA2,), ’s°])

(e, 7£2, 7g>, ’h2, 2i2, 752, °k’], [(°d?,), (°C’,), (°B”,), (PA’,), ’S’])

([e’, 7£2, ’g’, ’n>, 2i’, 732>, ’k’1, [(’D’,), (°C’,), (C°B’,), CA’,), ’S’D)

(e, ’g>, ’n>, 2i2, 752, ’k’1, [Ce’,), CD’,), (°C’,), (°B’,), (°A’,), ’S’])

10 ([7f7, ;g:’ ’h’, ’i’, ;j:’ ’k’], [(’E’,), (’D’,), (’C’,), (’B’,), (’A’,), ’S’])

11 ([7g7, ’h’, ’i’, ;j:’ ’k’], [(7f7,), (’E’,), (’D’,), (’C’,), (’B’,), (’A’,), ’S’])

12 ([’g?, ’n>, 2i7, 732, ’k’], [CF2,), CE’,), ©D’,), (°C’,), (CB’,), CA%,), ’S’])
13 ([’h>, ’i7, 232, ’k’1, [Cg’,), CF’,), CE’,), (°D?,), (°C’,), (°B’,), (PA’,), ’S’])
14 (0w, i, 257, °k’], [CG,), CF’,), CE,), (°D’,), (°C’,), (°B’,), CCA’,), ’S’])

,j,, ’k’], [’S’])
%1, [Ca’,), ’8°])

OO~ WN-O

15 (0’1, 737, ’x’], [Cn,), CG7,), CF,), CE’,), (°D’,), (°C’,), (°B”,), (CA’,), ’S’])

16 (i, 737, ’k’1, [CH?,), CG’,), CF,), (CE’,), (°D’,), (°C’,), CB’,), CA’,), ’S’])

7 (032, *k’1, [Ci%,), CH,), (G6,), CF,), (E’,), (’D’,), (°C’,), (°B’,), (°A*,), ’S’])

18 ([, *k’1, [CI°,), CH,), CG6,), CF,), (E’,), (’D’,), (°C’,), (°B’,), (°A’,), ’S’1)

19 ([’x1, [Cj2,), C17,), CH,), (6,0, CF,), (CCE’,), (°D’,), (°C’,), (’B’,), (°A’,), ’S’])

20 ([’x’1, [CJ7,), CI7,), CH,), CG7,), CF,), CE’,), (°D7,), (°C’,), CB’,), (CA”,), ’S’])

21 (00, Cx,), CJ32,), C17,), CH,), (6 ,), CF,), CE,), (°D’,), (C’,), (’B’,), (CCA’,), ’s’])
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22 (00, [Ck,), I, C1°,), CH,), (G ,), CF,), CE,), (°D’,), (C’,), (°B’,), (°A’,),
23 (1, [C¢BY’,), (°J°,), C1°,), (°H,), (G6”,), CF’,), CE’,), (°D’,), (°C’,), (°B’,), (’A’,),
24 ([1, [CB8?,), (°I°,), (C°H’,), (°G’,), (CF’,), CE’,), (D’,), (°C’,), (°B’,), (CA’,), ’S’])
25 (1, [CB7°,), CH,), (G6*,), CF’,), CE’,), (D’,), (C’,), (B’,), (A’,), ’S°]1)

26 (01, [CB6”,), (°G*,), CF’,), (CE’,), (°D’,), (C’,), (B’,), (CA’,), ’S’])

27 (1, [CB5,), CF’,), CE’,), (°D’,), (°C”,), (B’,), (CA’,), ’S’])

28 (01, [CB4”,), CE’,), (°D’,), (°C’,), (°B’,), (CA’,)), ’s’])

29 ([1, [C°B3?,), (°D’,), (°C’,), (°B’,), (°A%,), ’S’1)

30 ([1, [CB2°,), (°Cc’,), (°B’,), (CA”,), ’S°]1)

31 a, [CeB12,), CB,), (CA%,), ’S’1)

32 ([1, [CBO’,), (°A?,), °s°1)

33 ([1, D

moref?| n

61

’S’])

)S)])

It is easy to see that with simple right branching derivations like this one, the amount of space required in the stack
of predicted categories is not bounded by a finite constant — the longer the string, the more parser memory we will

need.

4.6.3 Left branching derivations, regularity, and space

Now let’s look at left branching:

" file: g3noe.py
a left branching grammar (no left recursion!)
parse(anoe, [;a;, ’b’, ’C’, ’d’, }e}’ ’f’: lg}’ }hl, 4 ;’ ,j,: )k;])

g3noe = [(’S’,[’B0’,°K’]),
(’BO’,[’B1’,°°1),
CB1°,[’B2°,°1°1),
(’B27,[’B3?,’H’]),
(’B3’,[’B4’,°¢°1),
(’B4°,[’B5’,°F’]),
(’B5”,[’B6”,°E’]),
(B6°,[’B7,°D’1),
(’B7>,[’B8”,°C]),
(’B8”,[’B9?,’B’]),
(’B9’,[’A°]),
¢r,0a1),
(B, [’v’]),
¢cr,eD),
(’p’,[’d°1),
CE,[e’]),
¢, 011,
e, eg’]),
¢H,[’h’]),
1,011,
1,03,
Cx,[x’1)]

If we look at the derivation tree for the only sentence in this language, we see that it has 33 nodes:

s
N

h:

~—=x

)

=%
n_:—12f>ﬂ
=l DR,

p—p—0
c—m

The left branching in this grammar requires unbounded memory top-down, but bottom-up we find:
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>>> from buht import *
>>> from g3noe import *
steps= 8178

0 ([;a;’ ’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ’i’, ,j,, ’k’], [’S’])

1 ([’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ’i’, ,j,, ’k’], [(;a;’)’ ’S’])

2 ([’b’, ’C’, ’d’, 7e7, 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’A’,), 757])

3 ([’b’, e, 2dr, e, 'f2, :g;, *h?, 217, ,j,, ’k’], [(’BQ’,), ’8°7])

4 ([’C’, ’d’, )e>’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’b’,), (7B97,), ’S’])
5 ([’C’, ’d’, )e>’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’B’,), (7B97,), ’S’])
6 ([’C’, ’d’, ;e;’ 7f;, ;g;, ’h’, ’i’, ,j,, ’k’], [(’BS’,), ’S’])

7 (a2, ver, 22, g2, Chr, i, 030, kD, [0c,), CB8YL), USUD)

8 (a2, ver, ’£2, 2g2, °W, 217, 737, *®’], [CC’,), (B8?,), ’S’])

9 ([’d’, ;e;’ ;f;’ 7g7, ’h’, ’i’, ,j,: ’k’], [(’B?’,), ’S’])

10 ([e7, 787, 72, w2, °3%, 237, ®], [CQ,), OB7?,), ’S’])

11 (e, €7, g7, w2, 20, 030, k], [0D2,), CBT2,), 0s°])

12 ([763, o ;g;’ ’h?, 217, ’j’, ’k’], [(’BG’,), ’S°7])

13 (07, g2, *n2, i, 030, k], [Ce,), (B6,), °S°D)

14 ([°£°, ’g’, ’h’, 2i’, ’j°, ’k’1, [CE’,), (°B6’,), ’S’])
15 (£, ’g’, ’h>, ’i’, ’j’, ’k’1, [(B5’,), ’S’1)
16 ([7g7, ’h’, ’i’, ’j,, ’k’], [(7f7,), (’BE’,), 757])
17 ([’g?, °h>, ?i°, 37, ’k’], [CF’,), (°B5’,), ’S°1)
18 ([7g7, ‘h? 74 ’j,, ’k’], [(’B4’,), 757])

19 ([’h’, 74 ’J,: ’k’], [(7g7,), (’B4’,), 757])

20 ([’h’, 74 ;j;’ ’k’], [(’G’,), (’84’,), ’S’])

21 ([’h’, 74 ’j,, ’k’], [(7B3>’)’ 757])

22 ([’i7, 737, ’k’], [Ch’,), (°B37,), ’S’])

23 ([’i>, 737, ’k’], [CH?,), (°B3’,), ’S’])

24 ([’i’, ’j,, ’k’], [(’BQ’,), 757])

25 ([’37, ’k’], [Ci7,), (°B27,), ’S’])

26 ([’37, ’k’], [C°I?,), (°B2?,), ’S’])

27 ([7j7, ’k’], [(’Bi’,), 757])

28 ([’k’1, [C3°,), (PB1’,), ’S’1)

29 ([’k’1, [CJ°,), (°B1’,), ’S’])

30 ([’k’1, [CBO?,), ’S’1)

31 (0, [Cx,), (°BO’,), ’S°1)

32 (01, [CK”,), (°BO’,), ’S’1)

33 (00,

more[?] n

There are never more than 3 elements in the parser memory, and clearly this would hold, no matter how long the
left branch was.

4.6.4 Determinism: time, space, nontermination

As we mentioned in the previous chapter, the BU recognizer will fail to terminate if the grammar has left recursion,
and even when it doesn’t, the number of steps the parser takes can be on the order of k™ for some k£ > 1. This is
because of nondeterminism!

‘Lookahead’ can reduce local ambiguity, but English is not LR (k) for any k.
Consider the simplistic grammar from §2.7.7 for sentences like the dog [that I told you about| barks:

S — DP VP

DP — D NP

D — the

NP — NP CP

NP - N

N — dog

CP — that I told you about
VP — barks

Parsing TD, the first choice arises when the parse needs to choose which rule to use to expand the NP. A BU parser,
though, has choices before that. For example, after shifting the first element

(dog that T told you about barks, (the) S)

There is a choice about whether to shift again or to reduce. Looking at the grammar (and not the input), an oracle
could tell us that we should reduce (because no rule has the and something else on the right hand side). — We will
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talk about how to compute that oracle later. But we face a more serious challenge in the BU parse when we get to
this point:

(that I told you about barks, (NP) (D) S )

Now, in order to tell whether we should shift or reduce, we need to look at the next word. If that word is barks,
we should reduce. If the next word is that, we should shift. In fact, looking 1 word ahead always suffices to tell us
what we should do next, and so the grammar is LR(1).

Is English LR(1)? No. When we elaborate the grammar further, it is not hard to see that English is not LR(k)
for any k. To show this, we just need to find cases where a decision about what to do with a constituent will depend
on something that can appear arbitrarily later in the string. Marcus’s famous argument [I7] used the sentences

(you) have the students take the exam!
have the students taken the exam?

In the former sentence, but not the latter, the parser should first find the empty DP subject of the imperative. But
the parser cannot tell what to do without seeing past the subject to the verb, take vs. taken, and there is no bound
on the length of subjects in English, so no fixed finite lookahead will suffice.

4.7 Conclusions

We are struggling with a few problems with our parsers:

e Given a particular grammar G, let’s say that the recognizer (or parser) has a problem with consistency if it is
pursuing derivations which could not possibly succeed, no matter what the input was. For example, given the
grammar at the beginning of §4.6.4] on page [62] we noticed that the recognizer could start with the steps:

0 (the dog that I told you about barks, S)
1 (dog that I told you about barks, (the) S) shift
2 (that I told you about barks, (dog) (the) S) shift

Looking at the grammar, we can see that no matter what the input was, no successful recognition can come
from step 2! The recognizer is wasting a lot of time with options that could not possibly succeed, no matter
what the input was.

e Given a particular grammar G and a particular input ¢, let’s say that the recognizer has a problem with local
ambiguity if it is pursuing dead ends that could not work given input . Using the example from §4.6.4] again,
consider the steps:

(the dog that I told you about barks, S)

(dog that I told you about barks, (the) S)  shift
(dog that I told you about barks, (D) S) shift
(that I told you about barks, (dog) (D) S) shift
(that I told you about barks, (NP) (D) S)  shift
(that I told you about barks, (DP) S) shift

Tk W N~ O

This parse cannot succeed with the input shown here, but if the sentence had been the dog barks, then step 5
would have been the right one. In this case, one symbol of lookahead — to see the word that — would be enough
to let us avoid this error, but Marcus shows various constructions where no finite amount of lookahead will be
enough. The recognizer is wasting a lot of time with options that could not possibly succeed given the particular
input we are analyzing. But the BU parser does much better here than the TD one does, because — intuitively
— it has seen more of the input at the point when it has to make choices among alternative derivations.

2Marcus [I7] proposes that when confronted with such situations, the human parser delays the decision about what to do about the
possible implicit subject (you) until after the next phrase is constructed. In effect, this allows the parser to look some finite number of
constituents ahead, instead of just a finite number of words ahead. This idea is further developed by Berwick and Weinberg’97. Parsing
strategies of this kind are sometimes called “non-canonical.” They were noticed by Knuth [I5], and studied further by Szymanski and
Williams [23]. They are briefly discussed in the classic reference by Aho and Ullman [I, §6.2]. A formal study of Marcus’s linguistic
proposals is carefully done by Nozohoor-Farshi [19]. This is an appealing idea which may deserve further consideration in the context
of more recent proposals about human languages. We return to related perspectives in §7]
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e Given a particular grammar G and a particular input 4, let’s say that the recognizer has a problem with global
ambiguity if there are multiple good parses. This problem become intractable when the number of parses
grows exponentially with the length of the input. This problem comes from the grammar, so no parser can do
anything about it! But it raises a question: how does the human parser avoid getting hopelessly bogged down in
irrelevant ambiguities? Obviously, we often notice ambiguities, and it could be that sometimes they could make
comprehension of grammatical sentences difficult, but usually we do not notice, or at least they do not make
comprehension difficult. Some ideas that could be part of a solution are considered in the exercises below.

Exercises: BU models and human-like parsing

1. Since all parsing models face problems with indeterminacies, there has been great interest in how humans tend
to resolve local and global ambiguities, and how they recover when they have resolved them incorrectly. One
idea is that people prefer certain analyses over others, only considering alternatives when the preferred analysis
does not work. For PPs and other modifying phrases, there seems to be a preference to attach PPs in the
deepest possible positions, at least in English. For example, there is evidence that people initially misanalyze in
the library in sentences lik

Jill put the book that her son had been reading in the library,
and the phrase the sock in
While Mary was mending the sock fell off her lap.

Frazier calls this a “late closure” preference: listeners prefer to “close” each phrase as late as possible, so if they
can attach a consituent low, they will.

How could you adapt the bottom-up parser above to exhibit this preference? Pereira offers an answer here: [20]).
prefer shift over reduce, whenever both options are consistent. Implement a version of Pereira’s idea by
modifying bup.py. Explain why it would be impossible to modify the top-down parser to exhibit
the same preference.

2. The “late closure” idea mentioned in the previous exercise is a preference that depends on structure, but there
is some evidence that the availability of analyses can depend on cooccurrence frequencies, meanings, and even
details about what is going on in the discourse. Altman and Steedman [3] propose that people will, even on the
first pass through a phrase, favor analyses that are “referentially supported.” For example, if I say first

A psychologist was counseling two women. He was worried about one of them but not about the other.
then you are more likely to get the correct analysis of
The psychologist told the woman that he was having trouble with to visit him again.

Describe informally (but as precisely and briefly as possible) how this idea could be implemented. Then see if
you can implement a simple version of the idea.

Altmann and others [2] 4] [14] later showed certain limitations in the contexts in which an effect of referential
support can be seen. Briefly discuss whether these proposals could also make sense in a BU computational
model of parsing.

3. Cuetos&Mitchell’88 present arguments that in some other languages, late closure effects do not hold [6]. Var-
ious theories about this have been proposed: Mitchell&Cuetos’91 propose that speakers are just sensitive to
the most frequent attachments in their languages [18]; Gibson&al’96 propose that late closure interacts with
another preference they call ‘predicate proximity’ [12]; Konieczny&al’97 integrates 3 separate preferences in a
‘parameterized head attachment’ theory, later extended by Hemforth&al’98 [16, [13]; another kind of preference
comes from what Janet Fodor calls ‘implicit prosody’ [9, [10]; and additional factors seem to be implicated in
a recent study of Bulgarian [22]. Review one or more of these studies and consider whether the proposals are
compatible with BU or any of our other recognition methods.

3These examples of “garden paths” are from Frazier’s classic survey article [I1]. Cf. also the recent Pickering & van Gompel survey
[21].
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Chapter 5 Left-corner CF' parsing

5.1 LC backtrack recognition

The algorithm for LC recognition deals with non-determinacies in the same way that the TD,BU recognizers do
(i.e. by keeping a list of all choices), but the parsing steps are different. In TD recognition, everything is predicted
and then scanned. bottom-up parsing everything except the prediction of a complete sentence is heard first, shifted,
and then the heard things are reduced to categories by using the rewrite rules backwards. In LC parsing, we use a
mix of these same ideas.

LEFT-CORNER BACKTRACK CF RECOGNITION(G), i)
ds=[(i,9))] where S is the start category

1 while ds# [] and ds[0]#£([],[]):

2 ds=[d| ds[0] = d] + ds[1]

3 if ds==[] then False else True

o

where the steps = are defined as follows:

input, (X;)a
input, Xs... X, (X)a

itX =+ X;...X,

(Ic-reduce)

input, (X;)X«

- fX—=X;...X,
input, Xy ...X,«

(Ic-reduce-complete)

w input, o
(shift) —————
input, (w) «

w input, war
(shift-complete) ————
mput, «

The reduce rule says that if you have a completed element (X1) on top of the stack, the “left corner” of the rule
X — Xjp...X,, then you can predict Xs...X,, in order to have a completed (X). The reduce-complete rule is
similar, except that the X that is completed is already there as a predicted element, and so they cancel each other
outl] When n = 0, that is, when the right side of a rewrite rule is empty, then the left corner is empty and there is
nothing to predict, and so the LC parser and the BU parse behave the same in these cases.

With these rules, we get derivations like the following.

IThis LC parsing strategy, in which the decision about whether to complete is made at the reduce step, is sometimes called ‘arc-eager’

.

67
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0  (Sue laughs on Tuesday, S)
1 (laughs on Tuesday, (Sue) S) shift
2 (laughs on Tuesday, (Name) S) lc-reduce: Name—Sue
3 (laughs on Tuesday, (DP) S) le-reduce: DP—Name
4  (laughs on Tuesday, VP) lc-reduce-complete: S—DP VP
5  (on Tuesday, (laughs) VP) shift
6  (on Tuesday, (V) VP) le-reduce: V—laughs
7 (on Tuesday, (VP) VP) le-reduce VP—V
8  (on Tuesday, PP) le-reduce-complete: VP—VP PP
9  (Tuesday, (on) PP) shift
10 (Tuesday, (P) PP) le-reduce: P—on
11 (Tuesday, DP) le-reduce-complete: PP—P DP
12 (e, (Tuesday) DP) shift
13 (e, (Name) DP) le-reduce: Name—Tuesday
14 (e €) le-reduce-complete: DP—Name

The implementation is an easy change from td.py and bu.py.

Notice that we cannot allow an empty category with this standard backtracking LC recognizer, because it can
cause non-termination. For example, with the rule C— € that we have in the Fromkin grammar on page we can
reduce to find any number of C’s at any point in any parse, as with BU recognition. For now, we simply eliminate
that rule. Left recursion, on the other hand, thougﬁ problematic for TD recognition, is not a problem for BU or
LC. So for practice we can use the grammar gOnoe that was presented on page We have sessions like this, using
a parser lch.py that returns the complete history of the parse:

>>> from lch import *
>>> from gOnoe import *
>>> parse(gOnoe, [’Sue’, ’laughs’])

0 ([’Sue’, ’laughs’], [’S’])

1 ([’laughs’], [(’Sue’,), ’S’])
2 ([’laughs’], [(’Name’,), ’S’1)
3 ([’laughs’], [(°DP’,), ’S°1)

4 ([’laughs’1, [’VP’1)

5 (1, [(Claughs’,), *VP’])

6 ([1, [CV>,), *VP’])

7 (0,

more[?] y

>>>

5.2 Assessment: time, space, and nondeterminism

5.2.1 Predictiveness and incrementality

Although we have only printed out tree representations at the end of a parse, it is clear that we could have formulated
the tree representations built at every step. When we do that, we see that, at various points, the stack has parts of
the derivation which are not connected to the root or to each other by rules that have already been used.

= picture coming <«

5.2.2 Right branching derivations, regularity, and space

Among the grammars that the LC recognizer can handle are some that define only regular languages. In particular,

we know that if a grammar has only right branching (or only left branching), the language it defines is regular.
Consider again the simple grammar from page [60], repeated here, that generations only 1 string, with a simple
right branching derivation:

" file: g2noe.py
this grammar has no empty productions
pa'rse(anoe, [’b’, ’b’, ’b’, ’b’, ’b }’ ’b’, ’b ;’ ’b J, b ;’ ’b’, )b)])
nnn
[Cs’,[B2,7B0°]),
(’BO’,[’B’,’B1°]),
(’B1°,[’B*,’B2’]),
(’B2°,[’B’,’B3°]),
(’B3’,[’B’,’B4°]),
(’B4>,[’B’,’B5°1),

g2noe =



11
12
13
14
15
16

© W N U W N e

e e
B W N = O

5.2. ASSESSMENT: TIME, SPACE, AND NONDETERMINISM 69

(’B5’,[’B’,’B6’]),
(’B6”,[’B’,’B7°]),
(’B7’,[’B’,’B8’]),
(’B8’,[’B’,’B9’]),
(’B9’,[’B’1),
CB,['b’1)]

This grammar accepts its single string on a long right branch:

>>> from g2noe import *
>>> from lcht import *
>>> parse(g?noe,[’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’])
steps= 1254462

([7a7’ ’b’, ’C’, 7d7, 767, 7f7, 7g7, ’h’,
([’b’, ’C’, ’d’, ;e;, ;f;, ;g;’ ’h’, ’i’,

140 7j7, ’k’], [’S’])
;J;

([’b’, ’C’, ’d’, 767, 7f7, 7g7, ’h’, ’i’, 7j7
7j7
"k

, k1, [Cary), 080
I TN ’Q)

([’b’, ’C’, ’d’, 767, 7f7, 7g7, ’h’, ’i’, : 7§7%: ESBé’j;’ S ])
([’C’, ’d’, :e:’ 7f7, ;g;, ’h’, ’i’, ,j,; ]’ [(’b’,), ’BO’])
([’C’, ’d’, )e)’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’B’,), ’BO’])
([’C’, ’d’, :e:’ 7f;, ;g;, ’h’, ’i’, ,j,; ’k’], [’Bl’])
([’d’, :e:’ :f:’ 7g7, ’h’, ’i’, ,j,; ’k’], [(’C’,), ’Bl’])
([’d’, )e)’ )f)’ 7g7, ’h’, ’i’, 7j7, ’k’], [(’C’,), ’Bl’])
([’d’, :e:’ :f:’ 7g;, ’h’, ’i’, ,j,; ’k’], [’BQ’])
10 ([793, ) :g:’ ’h?, 217, :j:’ ’k’], [(’d’,), ’B2°])
11 ([767, )f)’ )g)’ ’h’, ’i’, ’j’: ’k’], [(’D’,), ’B2’])
12 ([793, o :g:’ ’h?, 217, :j:’ ’k’], [’B3°])
13 (07, g2, *n2, i, 030, k21, [Cer,), B3]
4 (07, g2, *n2, i, 030, k2], [CE?,), B3°D)
15 ([7f:, :g:’ ’h?, 217, :j:’ ’k’], [’B4°])

O©CO~NOOPWN O

16 ([g>, *n7, 217, ’32, *®1, [C£2,), B&’])
17 ([g>, *n2, 237, 03, Cw], [OF2,), 7B4’])
18 ([)g), )h)’ )i)’ )j)’ )k)], [)BS)])

19 (w2, 7iv, 257, k1, [Cg,), 'BS])

20 ([)h), )i)’ )j)’ )k)], [()G),), )B5)])

21 ([)h), )i)’ )j)’ )k)], [)BS)])

22 (47, 757, "k1, [Cn,), ’B6°])

23 ([i7, 57, "w], [CH,), *B6’])

24 (17, °37, *x’1, [’B7°D)

25 (D37, k1, [Ci,), "B7])

26 ([’j7, ’x’], [CI’,), ’B7’])

27 ([°3°, °k’1, [’B8°1)

28 ([’k’], [(7j7,), ’B8’])

29 ([’k’1, [CJ°,), ’B8’1)

30 ([’x’1, [’B9’D)

31 ([1, [Ck’,), ’B9’])

32 ([1, [CK’,), ’B9’])

33 (00,

more[?] n

It is easy to see that with simple right branching derivations like this one, the amount of space required in the stack
of predicted categories is bounded by a finite constant — no matter how long the string, the parser never needs more
memory. However, calculating this parse takes longer than it should. . . even though each left corner is unambiguous!
... efliciency is still a serious problem.

5.2.3 Left branching derivations, regularity, and space

Now let’s look at left branching, using the grammar from page [GIl repeated here:

" file: g3noe.py
a left branching grammar (no left recursion!)
parse(93noe’ [)a), )b ), )C), )d), le)’ )f), )g)’ )h), )i )’ )j)’ )k)])
nmnn
g3noe = [(’S’,[’B0’,°K’]),
(’BO’,[’B1’,°°1),
(’B1°,[’B2°,°1°]),
(’B27,[’B3?,’H’]),
(’B3’,[’B4,°¢°1),
(’B47,[’B5,’F’]),
(’B5”,[’B6,°E’]),
(’B6°,[’B77,°D’1),
(B7>,[’B8”,°C’]),
(’B8’,[’B9’,’B’1),
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(’B9”, [’A°1),
Cnr, a1y,
(B, [’v’1),
¢cr,e’D),
(’p’,[’d’1),
(CE’,[’e’]),
¢, 011,
6, g’]),
¢H,[’n]),
1,011
C1,03°D
D

(’K’,[’k’ j

The left branching in this grammar requires unbounded memory top-down, but bottom-up we find:

>>> from lcht import *

>>> from g3noe import *

>>> parse(gSnoe,[’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’])
steps= 12263

([’C’, ’d’, )e)’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [(’BS’,), 757])

([’C’, ’d’, )e)’ 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [7c7, (’B7’,), 757])
([’d’, ‘e, 2f7, :g;, *h?, 217, ,j,, ’k’], [(’C’,), cr, (’B7’,), ’S°])
([’d’, )e)’ )f)’ 7g7, ’h’, ’i’, 7j7, ’k’], [(’B7’,), ’S’])

10 ([’d’, )e)’ )f)’ )g)’ ’h’, ’i’, ’j’: ’k’], [’D’, (’BG’,), ’S’])

11 (e, €7, vgr, vhr, 00, 030, R, [CQ,), D2, (B6Y,), *S])

12 (De, 72, ’g’, 0, 232, °37, x’), [CB6,), °S°1)

13 ([793, 2 ;g:’ ’h?, 217, ;j s ’k’], [’E’, (’B5’,), ’S°])

14 ([£7, ’g’, °b’, ’i7, 752, *k’1, [Ce’,), ’E’, (’B5°,), ’S’1)

0 ([;a:’ ’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ’i’, ,j,, ’k’], [’S’])

1 ([’b’, ’C’, ’d’, 767, 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [()a)’)’ 757])

2 ([’b’, ’C’, ’d’, ;e;, ;f;, ;g;, ’h’, ’i’, ,j,, ’k’], [(’A’,), ’S’])

3 ([’b’, e, 2dr, e, 'f2, :g;, *h?, 217, ,j,, ’k’], [(’BQ’,), ’8°7])

4 ([’b’, ’C’, ’d’, 767, 7f7, 7g7, ’h’, ’i’, 7j7, ’k’], [’B’, (’B8’,), 757])

5 ([’C’, 'dr, ve’, f7, :g;, *h?, 217, ,j,, ’k’], [(’b’,), ’B?, (’BS’,), ’S°])
6

7

8

9

J
b

15 (07, g’y *v2, i, °37, k2], [CBS,), °S’1)

16 ([7f), ;g:’ ’h?, 217, ’j’, ’k’], [’F’, (’B4’,), ’S°])
17 ([7g), *h?, 217, ’j’, ’k’], [()f),), F (’B4’,), ’S°])
18 ([7g7, ’h’, ’i’, ’j’: ’k’], [(’B4’,), 757])

19 ([7g), ’h?, 217, ’j’, ’k’], [’G’, (’B3’,), ’S°])

20 (D2, 237, 030, *k], [Ce’), 06, (B3’,), °$°1)
21 ([’h’, ’i’, ’j’: ’k’], [(’B3’,), 757])

22 ([’h’, 10, ’j’, ’k’], [’H’, (’BQ’,), ’S°])

23 ([’i’, ’j’: ’k’], [(’h’,), ’H’, (’BQ’,), 757])

24 (i, 737, ’k’1, [CB2?,), ’S’1)

25 ([71), ’j’, ’k’], [’I’, (’Bl’,), ’S°])

26 ([7j7, ’k’], [(’i’,), ’I’, (’Bi’,), 757])

27 ([,j,, ’k’], [(;le’)’ ’S°])

28 ([,j,, ’k’], [;J:’ (’BO’,), ’S°])

29 ([’k’], [(7j7,), )J)’ (’BO’,), 757])

30 ([’x’], [C°BO’,), ’S’1)

31 ([x’1, [’k’D)

32 (01, [Cx,), ’K’1)

33 (01,

more[?| n

There are never more than 3 elements in the parser memory, and clearly this would hold, no matter how long the
left branch was.

(Optional) Exercise: Notice the step count shown here, and compare it to the step count shown for the right-
branching example in the previous section. Why is calculating this left-branching parse so much faster? Why
didn’t we find a similar difference between right- and left-branching with the bottom-up parser (check the steps
that we reported for these same examples for the BU parser).

5.2.4 Determinism: time, space, nontermination

As we mentioned in the previous chapter, the LC recognizer will fail to terminate if the grammar has empty
categories, and even when it doesn’t, the number of steps the parser takes can be on the order of £™ for some k£ > 1.
This is because of nondeterminism!

‘Lookahead’ can reduce local ambiguity, but English is not LC(k) for any k.

= more coming <«
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Exercises: LC parsing

1.

Implement left corner recognition in a file called 1c(YOURINITIALS).py, and put your name at the top of the
file too.

Test your recognizer with some of the examples that are mentioned above (and any others you like!)

3. Email me the recognizer when it is working perfectly.

Optional exercises or squib topics for later:

4.

5.

After implementing the recognizer 1c.py, implement as many of these as you can:
o a recognizer with a step counter (a ‘timer’) lct.py,
o a parser that collects complete histories 1ch.py,
o a parser that collects complete histories, with a step counter 1cht.py,
o a parser that collects rules used 1lcp.py,
o a parser with a step counter lcpt.py,
o a function that converts the list of rules in LC order to a parse tree 1c2dt.py.

Hemforth&al’98 mentions LC parsing as one of 3 ideas that are “still central in psycholinguistic research” [3]
p299]. Are the parsing preferences suggested there really compatible with the LC model? (See me if you have
trouble finding this paper.)

Manning&Schutze’99 say in their text that “left-corner parsing is a particularly interesting case: left-corner
parsers work incrementally from left-to-right, combine top-down and bottom-up prediction, and hold pride of
place in the family of Generalized Left Corner Parsing models” [5], p427]. What do they mean by “incrementally’?
As discussed in class, it is not true that the completed parts of a parse are always connected. That is, there are
grammars with sentences s such that the LC recognizer, in the correct parse, finds an unconnected part and does
not connect it until k steps later, for £ > 0. In this case let’s say that, given G, sentence s has disconnection
time k. Define a grammar that accepts an infinite series of sentences sg, s1, ... such that disconnection times
k for these sentences increases without bound. (Choose a grammar that is linguistically natural, and sentences
that are easy to understand.)
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Chapter 6 Generalized left-corner CF parsing

TD, BU, and LC differ in the point at which they trigger the use of a rule. This observation is made by Brosgol’73
[4], and by Demers’77 [7]. This observation sets the stage for a generalization. We can specify, for each rule, how
much of the right side of the rule needs to be completed before we predict the rest to complete the left side. Let’s
call this ‘generalized left-corner’ recognition (GLC), even though various other generalizations of LC parsing are in
the literature[]

6.1 GLC backtrack recognition

Let’s assume that each rule has its right hand side broken into two parts like this:

S — ,.DP VP top-down
S — DP, VP left-corner
S — DP VP, bottom-up

In general for a rule with a right hand side of length n, there are n + 1 possible triggers. The triggers can differ
for each rule. For example, let’s call this grammar g121111221111, where each number corresponds to the length
of the trigger of the rule, with the rules are given row-by-row as follows:

S— DP, VP DP - D NP, NP — NP , PP NP - N,
VP —- V ,DP DP -V, CP—->CS, PP — P DP ,
P — of, D — the, N — student , V — knows ,

Using backtrack search, the algorithm is this:

GLC BACKTRACK CF RECOGNITION(G, 1)
0 ds=[(i,9))] where S is the start category
1 while ds# [] and ds[0]#(]],[]):

2 ds=[d| ds[0] =g d] + ds[1]

3 if ds==[] then False else True

where the steps =g are defined as follows:

input, (X;)... (X1) «

i XX X Xan g X,
input, X;41... X, (X) « ! 1

(gle-reduce)

input, (X;)...(X1) X«
input, X;41... X,

if X—X;... XiaXi-i-l- Xy

(gle-reduce-complete)

i t
(shiff) 2P @
input,(w)a

w input, wa

(shift-complete) -
mput, «

The reduce rule says that if you have a completed trigger (X;). .. (X1) on top of the stack, the “left corner” of the rule
X —=Xp...X; X471 ... Xy, then you can predict X;41 ... X, in order to have a completed (X). The reduce-complete
rule is similar, except that the X that is completed is already there as a predicted element, and so they cancel each
other out, as in LC parsing. Also notice that the trigger, the rest of the right hand side, or both can have length 0.

Ritchie calls our parsing strategies ‘extended generalized left corner’ [12} p.482]. Note that these parsing methods are ‘arc-eager’ in
the sense of Abney and Johnson’91.

73
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We have sessions like this, using a parser glch.py that returns the complete history of the parse:

>>> from glch import *

>>> from g121111221111 import =*

>>> parse(gl0, [’the’,’student’, ’knows’,’the’,’student’])
([’the’, ’student’, ’knows’, ’the’, ’student’], [’S’])
([’student’, ’knows’, ’the’, ’student’], [(’the’,), ’S’])
([’student’, ’knows’, ’the’, ’student’], [(’D’,), ’S’])
([’knows’, ’the’, ’student’], [(’student’,), (’°D’,), ’S’])
([’knows’, ’the’, ’student’], [(’°N’,), (°D’,), ’S°’])
([’knows’, ’the’, ’student’], [(°NP’,), (°D’,), ’S’])
([’knows’, ’the’, ’student’], [(°DP’,), ’S’])

([’knows’, ’the’, ’student’], [’VP’])

([’the’, ’student’], [(Pknows’,), ’VP’])

([’the’, ’student’], [(°V’,), *VP’])

10 ([’the’, ’student’], [’DP’])

11 ([’student’], [(’the’,), ’DP’])

12 ([’student’], [(’D’,), ’DP’])

13 (01, [(’student’,), (°D?,), ’DP’])

14 (0}, [¢n2,), ¢°D’,), ’DP’])

15 ([1, [C¢ne2,), ¢°D’,), °DP’1)

16 (1, [1)

more[?]

If we use a grammar with empty triggers, the GLC backtracking parser can fail to terminate.

A simple beam parser can be constructed by adapting the TD beam parser §3lso that it uses GLC rules instead
of TD ruﬁes. Then the beam parser can avoid nontermination if every parse that can be extended at all can be
extended in more than one way. But it can still be very inefficient. For example, consider this tiny grammar:

CO~NOUPWN-O

ner file: g2111.py
for the glc recognizer
g2111 = [C°DP’,[’D?,’NP’],[1),
e, n0], 00),
(D, [’the’], [1),
N7, [’student’], [1)]

With our GLC beam parser we find:

>>> from glcbt import =*

>>> from g2111 import =*

>>> recognize(g2111, [*the’, ’student’],-0.1)
steps= 10

probability= 0.25

True
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If we change the grammar so that fust one rule has an empty left corner, nontermination can be a problem, so let’s
modify the triggers so that two rules have empty left corners:

ner file: g0101.py
for the glc recognizer
go101 = [(°DP’,[],[’D’,’NP’]),
¢wpr, [PN°T, 1),
(’D’, 1, [’the’]),
N2, [’student’], [1)]

Now, with our GLC beam parser we find:

>>> from glcbt import =*
>>> from g0101 import =*
>>> recognize(g0101, [*the’, ’student’],-0.1)

steps= 5366
probability= 0.000434027777778
True

Things are very much worse with a larger grammar like g0 or g1 — GLC parsing is typically infeasible if there are
any empty left corners.

6.2 Assessment

6.2.1 The space of GLC recognizers

As Demers’77 [7] points out, for any grammar, the collection of trigger functions F,. for each rule r can be naturally
partially ordered by top-downness:

Fy < F, if and only if for every production p, the trigger Fi(p) is at least as long as Fa(p).

In other words, a setting of triggers Fi is as bottom-up as F5 if and only if for every production p, the triggering
point defined by F}) is at least as far to the right as the triggering point defined by F,. It is easy to see that
((Fy), <) is a lattice, as Demers claims, since for any collection (F;.) of trigger functions for any grammar, the least
upper bound of (F;) is just the function which maps each rule to the trigger which is the shortest of the triggers
assigned by any function in (F)), and the greatest lower bound of (F}.) is the function which maps each rule to the
trigger which is the longest assigned by any function in (F;.). Furthermore, the lattice is finite The simple lattice
structure for a 3 rule grammar can be depicted like this:

2Tt is easy to see that for any single production p with right side of length |p|, there is a “chain lattice” of |p|+ 1 recognition strategies
for that rule. The GLC lattice for a grammar is the lattice product of these chains. For a discussion of lattice products, see for example

[6, §1.26].
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np — , nil
nl — , ap nl
nl — , nl pp

np — nl , np — , nil np — , nl
nl — , ap nl nl — ap , nl nl — , ap nl
nl — , nl pp nl — , nl pp nl — nl , pp
np — nl , np — nl , np — , nil np — , nl np — , nil
nl — ap , nl nl — , ap nl nl — ap nl , nl — ap , nil nl — , ap nl
nl — , nl pp nl — nl , pp nl — , nl pp nl — nl , pp nl — nl pp ,
np — nl , np — nl , np — , nl np — , nl np — nl ,
nl — ap nl , nl — ap , nl nl — ap nl , nl — ap , nil nl — , ap nl
nl — , nl pp nl — nl , pp nl — nl , pp nl — nl pp , nl — nl pp ,
np — nl , np — nl , np — , nl
nl — ap nl , nl — ap , nl nl — ap nl ,
nl — nl , pp nl — nil pp , nl — nl pp ,
np — nl ,
nl — ap nl ,
nl — nil pp ,

It is easy to see that, number of different GLC recognition strategies grows with the size of the grammar G. For
each G the number of GLC recognizers is
H |rhs| + 1

lhs—rhseG
So for our example grammar g1, we can calculate the number of different GLC recognizers this way:

>>> from gl import *

>>> len(gl) # first let’s remember how many rules it has
75

>>> size = 1

>>> for (lhs,rhs) in gl: size = size * (len(rhs)+1)

>>> size

44115102527743250191613952L

So even for this little toy grammar with 75 rules, the number of alternative GLC recognizers is 44,115,102,527,743,250,191,613,952
(on the order of 10%°, bigger than Avogadro’s number).
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6.2.2 Oracles

We saw in the previous chapter that the TD, BU, and LC recognizers will fail to terminate in certain cases, and even
when they do terminate, the number of steps taken on input of length n can be on the order of £" for some k£ > 1.
This is because of nondeterminism! In 4.7 on page [63] we noticed that the nondeterminism can be partitioned into
3 kinds:

e Given a particular grammar G, the recognizer has a problem with consistency if it is pursuing derivations
which could not possibly succeed, no matter what the input was.

e Given a particular grammar G and a particular input ¢, let’s say that the recognizer has a problem with local
ambiguity if it is pursuing dead ends that could not work given input 1.

e Given a particular grammar G and a particular input 4, let’s say that the recognizer has a problem with global
ambiguity if there are multiple grammatical parses.

To get a parser which is as fast and reliable as the human parser, we want to reduce all of these sorts of indeterminacy
to manageable levels. Let’s consider each of these in turn.

Consistency oracle
Some stacks cannot possibly be reduced to empty, no matter what input string is provided. In particular:

e There is no point in shifting a word if it cannot be part of the trigger of the most recently predicted category.
e There is no point in building a constituent (i.e. using a rule) if the parent category cannot be part of the trigger

of the most recently predicted category.

These conditions can be enforced by calculating, for each category C that could possibly be predicted, all of the
stack sequences which could possibly be part of a trigger for C.
e For TD, the triggers are always empty.

e For LC, the trigger sequences are one symbol long
(unless empty productions are allowed, which must have empty triggers).

e For BU, trigger sequences are the lengths of the rhs of the rules.

Given a context free grammar G = (X, N, —, S), we can generate instances of the is a beginning of relation with
the following logic.

(trigger) ( C—=21...04,Tit1 ... Tn

L1 ...Tq, O)
. (Il .o Ty, O)
unshift
( ) (,Tl...l'i_l,C)
vz, C
(unreduce) (@1...2:,C) Ti = Y1 YjYjr1 - Yn

(LL'l e Zi—1Y1 -2 Y5, C)
Clearly this last rule can recursively define an infinite set of beginnings.

Example: Consider the following grammar ghbmix with the triggers indicated:

IP — DP 11, I1 — .10 VP 10 — ,will.

DP — D1, D1 — DO, NP D0 — the,

NP — N1 N1 — NO, NO — idea,
N1 — ,NO CP

VP — V1 V1 — V0, V0 — ,suffice

CP — (1, C1 — Co, IP CO0 — that,

It is not hard to see that in this case, the beginnings of each category are finite. For example, the following
proof shows that the beginnings of IP include DP I1, DP, D1, DO, the, and e:
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(DP ILIP) .
W (trlgger)
ETER
(DO 1) (unreduce)
(the IP) (unshift)
 (eIP)

Notice that the beginnings of IP do not include the idea, the I1, DO IO, 10, or I1.

GLC recognition with an oracle is defined so that whenever a completed category is placed on the stack, the
resulting sequence of completed categories on the stack must be a beginning of the most recently predicted category.
So let’s say that a sequence C is reducible iff the sequence C' is the concatenation of two sequences C = C1C5
where

1. C} is a sequence (A;),..., (A1) of 0 < i completed elements

2. (5 begins with a predicted element C', and

3. Ai,..., A, is a beginning of C

When the beginnings of a category can be infinite, though, we cannot precompute an explicit list of them. In that
case, as we see in standard approaches to LR parsing, it is common to use an automaton to define them, but now
there are other perspectives which we will mention in §7.3] below.

Using this definition of reducibility (which can sometimes but not always be explicitly calculated), we can add
a first oracle to GLC parsing by defining the steps = 4., as follows:

input, (X;)... (X1) «

le-red
(gle-reduce) input, Xjp1... X (X) @

if X—X;...X;,Xi41... X, and (X)a is reducible

input, (X;)... (X1) X«
input, X;41... X, «

(gle-reduce-complete)

if X—)Xl . .Xi,Xi+1. .. Xn

w input, «

shift
(shift) input,(w)a

if (w)a is reducible

w input, wa
(shift-complete) #
mput, «

Now let’s consider what we can do with a lookahead oracle.

Lookahead oracle

For the top-down steps, when we place predictions onto the stack, there is no point in using an expansion A — «, 3,
predicting (3, if the next symbol to be parsed could not possibly be the first symbol of a 5. So by looking ahead we
can avoid some dead ends. This “bottom-up” information can be provided with a “lookahead oracle.” Obviously,
the lookahead oracle does not look into the future to hear what has not been spoken yet. Rather, the parser lags k
words behind the buffering of the input.

In ordinary, clear conversation, humans do not do this! As mentioned before, evidence suggests that, at least
typically, we analyze what we hear word-by-word [3} [5l 13]. But let’s see how lookahead could be implemented,
in case we wanted to use it in unusual situations (or in engineering tasks where modeling human abilities is less
important than processing large amounts of data quickly).

We can precompute, for each category p, what the first k symbols of the string could be when we are recognizing
that category in a successful derivation of any sentence. Obviously, this will always be finite and can be kept in a
table. And obviously, in calculating lookahead, we ignore the triggers, since the triggers are completed elements on
the stack. We want lookahead only to keep predictions in check.

One kind of situation that we must allow for is this. If we are predicting Ay,..., A, and A; ... A; =* ¢, then
first symbol of A;11 (if there is one) is the first symbol for Ay,..., A,.

Since we allow empty productions, we first calculate which categories of our grammar can be empty using the
recursive definition:

empty(A) = True iff A - eV (A — Ay... A, Aempty(A;) for all 1 < i <mn).
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With that practice, we can recursively define first(A) for each category A, as follows:

A — wa, or
w € first(A) iff { A — Ba Aw € first(B), or
A— By...Bi_1Bija ANempty(B1) A ... Aempty(B;—1) A w € first(B;).

For each nonterminal w, of course, first(w)={w}. So then finally, consider any grammar G with trigger-marked

rules
A—a,pf.

For every suffix f = ;1 ...2, in the grammar, we defind?
first(z1 ... 2n) = {w| wa € first(x1) x ... x first(zy,)}.

That is, first(x; ...x,) is the set of first words w of elements of the Cartesian product first(zy) x ... x first(zy).
This strategy can be generalized to compute the first k elements of any sequence of categories, as described in [2]
pp357-8] or [8, pp239f,2541i].

Using this definition of first, we can add a second oracle to GLC parsing by defining the steps =g;c, as follows:

input, (X;)... (X1) «
input, X;11... X, (X) «

and (X)a is reducible,
and first(input) Cfirst(X; 1. .. X,,)

(glc-reduce) if X—=Xp... X, Xi41. .- Xy,

input, (X;)...(X1) X«

It Xorr Xo o if X—=X5...X;,Xi41. .. Xy, and first(input) Cirst (X 41. . . X;,)

(gle-reduce-complete)

w input, «

(shift) if (w)a is reducible

input,(w)a
i t

(shift-complete) M
mput, «

Global ambiguity oracle

So far, we are using the beam to throw out parses that require too much guessing, but we can do much better! We
will return to this later.

3Here, for sets s1,s2, I am writing s1 x sz for the set of strings concatenated from s; and s;. That is,

81 X 82 = {:clxz\ r1 €81 Nxg € 82}.
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Exercises: GLC parsing and calculating the oracles

1. Copy my empties.py to a new file called first(YOUR-INITIALS).py.
2. The parses we want to get. In a comment, write out the 16 step GLC derivation of the sentence
the idea will suffice
from gbmix, using the triggers indicated in that grammar. This grammar is shown on [[7labove and is in the file
gbmix.py. Write the derivation out with lines numbered from 0 to 16, exactly as done in class. (I am thinking
you will type this derivation in by hand, but you can calculate it instead if you see a way to do that.)
3. The look-ahead oracle that will help us get those parses. Let’s calculate firsts0fCats(g) which takes
a grammar g with rules (lhs,a,) and returns a list of pairs (A, firsts) where firsts is the list of words that can
begin A, first(A). The calculation is done as follows:
e Initialize the first sets to empty lists
e Then process the grammar rules (lhs,rhs) as follows, until nothing is added:
- if the rhs starts with a terminal w, add w to first(lhs)
- if the rhs starts with nonterminal A, add first(A) to first(lhs)
- if the rhs starts with nonterminals A; ... A; where empty(A;)A... Aempty(A;_1), add first(A;) to first(lhs)
(I will check your code by applying it to the grammar gbmix.py You should check it that way too!)
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Chapter 7 Dynamic methods: CKY, Earley

If | had to choose between that and the Matrix, I'd choose the Matrix.
— Cypher, in The Matriz

The stack-based GLC approaches to parsing calculate one derivation at a time. When we do not know which
path to take, we can choose one and keep a list (a ‘backtrack stack’ or a ‘beam’) of the choices not taken, in case
our first choices do not work out. That kind of approach seems to fit with natural hypotheses about incremental
interpretation and garden path effects in human language use. And that kind of approach fits with the fact that some
(but not all!) very long sentences are fairly easy to understand, even though our grammars are largeﬂ However,
the stack-based methods face difficult problems which we have not handled adequately yet. Putting it bluntly, the
methods we have looked at do not work. They are nonterminating with some of the rules we want to use, and even
when we eliminate those rules, they are intractable. We have not found a way to use them yet that could be a
reasonable starting point for models of human sentence recognition or production.

Rather than developing one possible derivation at a time as GLC methods do, maybe it would be better to
work on whole sets of solutions at once. This kind of step is familiar in mathematics, when we graduate from
simple arithmetic to algebra. Instead of computing 1 product, we can compute many at once, and reason about
whole sets of solutions. A linear equation with 3 variables defines an infinite plane of solutions. With two of these
equations, the intersection of two different planes is a continuous line of solutions, and a third equation can restrict
the solutions to a point. This kind of calculation is usually done with matrices of real numbers, representing the
points in Euclidean space R™. But linguistics is (mainly) discrete, not continuous. That is, we humans categorize
the continuous flux of our experience and reason categorically, discretely. We are digital, not analog computers.
The phrases “the stuffy nose” and “the stuff he knows” are usually acoustically similar, but not syntactically or
semantically or pragmatically similar. 350 years after Euclid, Diophantus began the move from reasoning about
continuous Euclidean spaces with real numbers to reasoning on the grid, looking for solutions in tuples of integers
Z"™. The ideas in this chapter will be more like that. Numbering our categories with natural numbers N = {0, 1, ...},
we look for solutions in N™. The recognition methods in this chapter use matrix-based ‘dynamic programming’
methods to collect all parts of all solutions, in a matrix. The discussion of dynamic programming in a good text
on algorithms like [7] §15E is strongly recommended. We will use some fundamental but surprising strategies to
compute ‘all solutions’, that is, the transitive closure of a set with respect to a function or a set of functions).

1Charniak & al’98 observe that ... for large grammars (such as the PCFG induced from the Penn II [Wall Street Journal| corpus,
which contains around 1.6 - 10% rules) and longish sentences (say, 40 words and punctuation), even ¢'(n2) looks pretty bleak...In our
work, we have found that exhaustively parsing maximum-40-word sentences from the Penn II treebank requires an average of about
1.2 million edges per sentence.” There is also popular interest in very very long sentences, especially intelligible ones. A column in
The Guardian (Friday Nov 30, 2007) says: “For many years the longest sentence in English literature belonged to James Joyce, with a
4,391-word section of Molly Bloom’s Ulysses soliloquy. Then, in 2001, came Benjamin Trotter’s 13,955-word effort in Jonathan Coe’s
The Rotters’ Club. Now we have Nigel Tomm'’s one-sentence, 469,375-word book, The Blah Story, Volume 4.” In the New York Times
(on page BR27 of the Sunday Book Review, Dec 26, 2010) we read “...Czech novelist Bohumil Hrabal’s Dancing Lessons for the
Advanced in Age (1964). .. unfurls as a single, sometimes maddening sentence that ends after 117 pages without a period, giving the
impression that the opinionated, randy old cobbler will go on jawing ad infinitum. But the gambit works. His exuberant ramblings
gain a propulsion that would be lost if the comma splices were curbed, the phrases divided into sentences. .. The Polish novelist Jerzy
Andrzejewski went even longer in The Gates of Paradise (1960), weaving several voices into a lurid and majestic 158-page run-on. (The
novel actually consists of two sentences, the final one a mere five words long.)... An 800-plus worder in Victor Hugo’s Les Misérables
(1862) has sometimes (erroneously) been cited as the longest in French literature; its winding description of Louis Philippe as a ruler
who hews to the middle of the road in every aspect (‘well read and caring but little for literature,” ‘incapable of rancor and of gratitude’),
damns the king’s modesty with the grandness of its design. Is it coincidence that, as Roger Shattuck points out, the longest sentence
in Proust — 944 words — dissects the plight of the homosexual in society? And what about the last of the six immense paragraphs that
constitute Gabriel Garcia Marquez’s Autumn of the Patriarch (1975), one mammoth sentence concluding with ‘the good news that the
uncountable time of eternity had come to an end’?” Checking these examples, most of them have, in effect, coordinated sentences that
are neither separated by periods nor connected by and, but just listed with commas. Many such sentences are are perfectly intelligible,
and so any adequate model of human parsing should handle them. See the Marquez example given below on page

2Cf. 28, §8], |251 §37], [1}, §10.2].
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DIOPHANT I
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from the 1621 edition of Diophantus’ Arithmetica, trans. Claude Gaspard Bachet de Méziriac, http://en.wikipedia.org/wiki/Diophantus
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7.1 CKY recognition

For simplicity, we first consider context free grammars in Chomsky normal form. Chomsky normal form grammars
have rules of only the following forms, for some nonterminals A, B,C' € N, and pronounced elements w € %,

A—BC A—w

If € is in the language, then the following form is also allowed, subject to the requirement that S does not occur on
the right side of any rule:

S— €

Here, we will leave out the case of languages that contain e. (It is of technical interest only, and could easily be
covered if needed.) A Chomsky normal form grammar has no unit or empty productions (except possibly S — ¢),
there are no “cycles” A =% A, and no infinitely ambiguous strings. And these grammars allow an especially simple
matrix-based recognition method. To parse a string wy, ..., w,, for n > 0 we use the following logic:

m [reducel] if A— w;

(i,j): B _(4,k):C

G A [reduce?] if A— BC

Notice how similar these rules are to the BU parser rules: the first is like a shift and reduce, and the second is like

a single reduce step, except that the rules are not being kept in a stack. Instead, these results are kept in a matrix

indexed by positions 0. ..n, and individual parses are not kept distinct. Recognition is successful iff (0,n) : S is in

the closure of the axioms under these inference rules. In that case, we have found an S between positions 0 and n.
Consider this grammar for example

P
IP — DP I1 lambs IJO VP
DP — lambs Wil Vo DP
I1 — IO VP \ \
10 — will eat oats
VP — VO DP
VO — eat
DP — oats

The axioms can be regarded as specifying a finite state machine representation of the input:

@ lambs ‘@ will ‘® eat ‘® oats ‘@

Given an n state finite state machine representation of the input, computing the CKY closure can be regarded as filling in
the “upper triangle” of an n X n matrix, from the (empty) diagonal up:

0 1 2 3 4

0 DP IP
1 I0 I1
2 Vo | VP
3 DP
4

(It is easy to generalize the CKY method to accept not strings but arbitrary finite state machines.)
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The CKY algorithm provides an efficient way to calculate the complete matrix ‘in one sweep’. The idea is
to start by filling the lexical categories, just above the diagonal — these are constituents of length 1. Then we
consider constituents of length 2,3,...n. This is a variant of the Floyd-Warshall algorithm for computing transitive
closures, emerging from the work of Cocke, Kasami and Younger |14, [34] [6] 2, 26], 27], rather like a single matrix
multiplication step, filling the upper triangle of the matrix:

CKY CF RECOGNITION(G,wy . .. wy,)

0 m = a square matrix of size (n+1)x (n+1)
1 for A— w;:

2 m[i-1|[i].append(A)

3 for widthe{2,... n}:

4 for starte{0,...,n-1}:

5 end=start+width

6 for mide{start+1,...,mid-1}:

7 for A—BC:

8 if Bem[start][mid] and C€m[mid][end]:
9 m[start][end].append(lhs)
10  if Sem[0][end] then True else False

We can picture its operation in the loop that begins in line 4: we go from widths 2 to n-1, building constituents
from each start position, and with each possible midpoint between the start and start-+width. It is easy to see that
this algorithm completes within time proportional to n3, since we have the three loops in lines 3,4,6 bounded by n,

with a fixed amount of computation in each.
We can implement this algorithm quite directly in python:

e cky.py E. Stabler, 2013-02-15
Recognizer for CFG in CNF form

mmn

# from g0 import *

def initializeMatrix(w,PL,matrix): # insert lexzical items w=wl w2 ... wn
for (i,wi) in enumerate(w): # enumerate numbers the elements of w from 0
for (lhs,rhs) in PL:
if rhs == wi:

matrix[i] [i+1].append(lhs) # so ¢f lhs -> wl, Llhs in matriz/[0][1]

def closeMatrix(P,matrix,length):
positions = length+l # intuitively, we add position 0
for width in range(2,positions):
for start in range(positions-width):
end = start + width
for mid in range(start+l,end): # so then range stops with end-1
for (lhs,y,z) in P:
if y in matrix[start] [mid] and z in matrix([mid] [end]:
matrix[start] [end] . append(1hs)

def accepts((PL,P),w):
length = len(w)
positions = length + 1 # 4ntuitively, we add position 0
matrix = [ [ [] for i in range(positions) ] for j in range(positions) ]
initializeMatrix(w,PL,matrix)
closeMatrix(P,matrix,length)
showMatrix (matrix)
return ’S’ in matrix[0] [length]

def showMatrix(m):
for row in m:
print row

#from gOcnf import *

#print accepts((l0cnf,pOcnf), [’Sue’, ’laughs’])

#print accepts((l0cnf,pOcnf), [’Sue’, ’praises’, ’Maria’, and’, the’, student’])

#print accepts((l0cnf,pOcnf), [’praises’, ’Maria’, ’and’, *the’, *student’])

#print accepts((l0cnf,pOcnf), [’Sue’, ’praises’, ’Maria’, ’and’, the’, ’student’, ’knows’, ’1t’])

Let’s adapt our first grammar so that the rules are all in Chomsky normal form (with no empty productions),
and let’s divide the lexical, terminal rules from the binary nonterminal rules:
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1 """ file: gOenf.py

2 Here we adapt parts of our first grammar g0.py to CNF, and
3 we separate binary nonlexzical from unary lezical productions.
4 This grammar has left (and right) recursion but no empty productions.
5 nmnn

6 pOcnf = [(°S’,’DP’,’VP’),

7 (’S?,°DP?,°V?), # for intransitive
8 (’DP’,’D’,’N’),

9 (’DP’,’D’,’NP’),

10 (°NP’,°N’,°PP’),

1 (’NP’,’NP’,’PP’), # left rec

12 (°’NP’,’A,’NP?),

13 (°vp’,’V’,°DP’),

14 (’vp?,’V’,°PP’),

15 (°VP?,’Adv’,’VP?),

16 (°VP?,°VP’,’Adv’), # left rec

17 (’vp?,’V?,°CP’),

18 (’PP’,’P’,°DP’),

19 (7CP’,’C’,’S’),

20 (’A?,’Adv?,’A?),

21 (’S?,°3?,’CoordS?’), # left rec

22 (’CoordS’,’Coord?,?S?),

23 (°D’,’D’,’CoordD’), # left rec

24 (’CoordD’, ’Coord’,’D?),

25 (°v?,°V?,2CoordV?), # left rec

26 (’CoordV’,’Coord’,’V?),

27 (°N?,°N’,’CoordN’), # left rec

28 (’CoordN’,’Coord’,’N’),

29 (’A°>,°A° ,’CoordA’), # left rec

30 (’CoordA’,’Coord?,’A’),

31 (’Adv’,’Adv’,’CoordAdv’), # left rec
32 (’CoordAdv’,’Coord’,’Adv’),

33 (°P?,’P’,’CoordP’), # left rec

34 (’CoordP’,’Coord’,’P?),

35 (’Adv’,’Adv’,’CoordAdv’),

36 (’CoordAdv’,’Coord?’,’Adv?),

37 (°VP?,’VP’,’CoordVP’), # left rec
38 (’CoordVP’, ’Coord’,’VP?),

39 (°NP’,’NP’,’CoordNP’), # left rec
40 (’CoordNP’,’Coord’,’NP’),

41 (°DP’,’DP’,’CoordDP’), # left rec
42 (’CoordDP’,’Coord’,’DP?),

43 (’PP’,’PP’,’CoordPP’), # left rec
44 (’CoordPP’,’Coord’,’PP?),

45 (°CP?,’CP’,’CoordCP?), # left rec
46 (°CP’,’Coord’,’CP?)]

47

48 1lOcnf = [(°D’,’the’), # now the lezical rules
50 (°D?,’some?),

51 (°D’,’every’),

52 (°’D’,’one’),

53 (°D?,’two?),

54 (’A’,’gentle’),

55 (’A’,’clear?),

56 (’A?,’honest’),

57 (’A’,’compassionate’),

58 (’A?,’brave?),

50 (’A’,’kind?),

60 (°N’,’student’),

61 (°N?,’teacher’),

62 N2, 2city?),

63 (°N?,’university’),

64 (°N?, beer?),

65 (°N’,’wine’),

66 (°v’,’laughs’),

67 (°V?,’cries?),

68 (°V’,’praises’),

69 (°V?,’criticizes?),

70 (v, ’says?),

71 (°V’,’knows’),

72 (’Adv’, ’happily’),

73 (’Adv’,’sadly’),

74 (’Adv’,’impartially’),
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(’Adv’, ’generously’),
(°’DP’,’Bill?),

(’DP?, *Sue’),
(°’DP’,’Jose’),

(’DP’, ’Maria’),
(’DP’,’Monday’),
(°DP’, ’Tuesday’),

(°DP’,’he’),
(’DP’,’she’),
(°DP’,’it’),

(’DP’,’him’),
(’DP’, ’her’),
(°p’,%in’),
(’P’,’0n’),
(’P’,’with’),
CP’,’by?),
(’P?,7to%),
(’P’,’from?’),
(’°Cc’,’that?’),
(°C?,’whether’),
(’Coord’,’and’),
(’Coord’,’or?),
(’Coord’,’but?)]

With this grammar, we have sessions like this:

>>> from gOcnf import *
>>> from ckyt import *
>>> print accepts((10cnf,pOcnf), [’Sue’, ’laughs’])
chart= [[[], [°DP’], [’s°]11, (00, 00, [°v°1l, C0D, 0O, (11]
steps= 3
True
>>> print accepts((10cnf,pOcnf), [’laughs’,’Sue’])
chart= [[[], (°v°], [°ve’]], (01, 00, [°pp°1], [0d, 00, (111
steps= 3
False
>>> print accepts((10cnf,pOcnf),[’Sue’,’praises’,’Maria’,’and’,’the’, ’student’])
chart= [[[1, [°pP’], [°s’], [°s’1, 00, OO0, C°s°11, (00, OO, C°vel, Ceveel, 0O, 00, C°veell, [OD, 00, OO0, C°Dp’d1, 01, L
steps= 15
True
>>> print accepts((10cnf,pOcnf),[’Sue’, ’praises’,’Maria’,’and’, ’the’, ’student’, ’knows’,’it’])
chart= [[[], [°pP’], [°s’], [°s’1, 00, 00, [°s°1, [°s’], [°s°]], (O3, 00, C°ved, Ccve’d, 00, OO, C°veel, 00, 001, (0D,
steps= 26
True
>>> print accepts((10cnf,pOcnf),[’Bill’, ’knows’,’that’,’Sue’, ’praises’,’Maria’,’and’,
’the’,’student’, ’knows?’,’it’])
chart= [[[], [’DP’], [’s°1, (0, (0, [°s’), [°s’1, OO, 0O, [°s’1, [’s’, °s°1, [’°s’, °s11, (00, 0O, C°vel, 00, 00, [°vp
steps= 47
True

This is the first efficient recognizer we have used in this class. It still wastes time on useless steps, but not to the
extent we saw in the other methods. It always terminates; it can handle left and right recursion; it has no problem
with exponential or infinite ambiguity. It does not allow unary and empty productions, but those can be added
without making the parser significantly less efficient [15].

On the other hand, since this recognition method pools all results from all derivations in one table, extracting
a description of the derivation now takes more work than before, and getting the trees can be nonterminating in
the case where there are infinitely many trees to extract. It is straightforward to adapt the TD parser to do this,
for example (this is implemented in ckyp.py). So in a sense, it could seem that we have sacrificed the problem we
wanted to solve in order to achieve efficiency, but that is not quite fair. When the number of trees is reasonable,
we can get them from the chart in a reasonable amount of time.

Setting aside the trees, the recognizer itself is ‘efficient’ in the computer scientists’ sense (i.e. it terminates
within a number of steps bounded by a polynomial function of the length n of the input — in fact the number of
steps is proportional to n? in the worst case. Is that good enough? Aho&Ullman [2] say:

It is essentially a “dynamic programming” method and it is included here because of its simplicity. It is
doubtful, however, that it will find practical use, for three reasons:

1. n3 time is too much to allow for parsing.

2. The method uses an amount of space proportional to the square of the input length.
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3. The method of the next section (Earley's algorithm) does at least as well in all respects as this one, and
for many grammars does better.

Valiant’75 shows that the runtime complexity can be reduced below n? using fast matrix multiplication [33], but the

method is not feasible. Lee’02 shows that CF recognition cannot be faster than matrix multiplication [16]. Satta’94
finds analogous polynomial complexity results for the more expressive formalism of TAGs [24].

7.2 Earley recognition

With the grammar gOcnf in the last section, no sentence begins with the verb laughs, but still if you give CKY a
string like knows that Sue praises Maria and the student knows it, it will do a lot of work before realizing
that this input cannot be recognized. The steps of the CKY recognizer are bottom-up, applied without any top-
down check on whether the constituents being built could possibly appear in those positions. Early’68 shows how
a top-down oracle can be built in. This algorithm has the “prefix property,” which means that, processing a string
from left to right, an ungrammatical prefix (i.e. a sequence of words that is not a prefix of any grammatical string)
will be recognized at the the earliest possible point.
For A, B,C € N and some designated S’ ¢ N, for «, 8,7 € (N UX)*, and for input w; ...w, € X",

(0,0): 8" —>[|eS [axiom]|

(i,§) : A= aew; 18

(t,j+1): A= awji e[ [scan]
(iv(]y.')‘yz’ )/:1 5 ..5 : [predict] if B~
(i,k) : A= aeBfB (k,j): B— e [complete]

(i,j): A— aBexy

The input is recognized iff (0,n) : S” — Se is in the closure of the axioms (in this case, the set of axioms has just
one element) under these inference rules. A straightforward implementation is provided in earley.py.

7.3 Memoization

The matrix-based parsers we have reviewed here is that they cannot provide a reasonable model of how humans
actually parse ordinary, clear, conversation. Even if they could be made to fail in garden paths (e.g. maybe the
tree collection would fail in those cases?), still it is clear that these methods need more space for longer sentences,
without bound. CKY needs an n? matrix for a sentence of length n, which does not seem reasonable.

But let’s reflect on why these parsers can be efficient when the GLC parsers were not: it is because the GLC
parsers must guess, and when a guess is wrong, they often have to recompute constituents that had already
been computed. So any of the GLC parsers, from top-down (LL) to bottom-up (LR) could be supplemented
with a memory mechanism which could store, ‘memoize’, how particular constituents were parsed. Then, when
an alternative parse is explored, previously computed subproblems need not be solved again. An appropriate
memoization strategy can turn a top-down parser into something like an Earley parser [12, 20 4 [13], and there is
some evidence that a process like this could account for ‘reanalysis’ and other effects in human parsing [30] [I1]. If
memory for past computations is kept forever, then obviously memory requirements grow without bound, but this
need not be assumed. Research on these topics is ongoing. (See footnote B on page on achieving Earley-like
parsing of MCFGs with memoization in datalog.)

= more coming <



88 CHAPTER 7. DYNAMIC METHODS: CKY, EARLEY

There it was, indeed, captive in seven lacquered bibles, so unavoidable and brutal that only a man immune to the spell of glory and alien to the interests of his power
dared expose it in living flesh before the impassive old man who listened to him without blinking fanning himself in the wicker rocking chair, who only sighed after each
mortal revelation, who only said aha, repeated it, using his hat to shoo away the April flies aroused by the luncheon leftovers, swallowing whole truths, bitter truths,
truths which were like live coals that kept on burning in the shadows of his heart, because everything had been a farce, your excellency, a carnival apparatus that he
himself had put together without really thinking about it when he decided that the corpse of his mother should be displayed for public veneration on a catafalque of
ice long before anyone thought about the merits of her sainthood and only to contradict the evil tongues that said you were rotting away before you died, a circus
trick which he had fallen into himself without knowing it ever since they came to him with the news general sir that his mother Bendicién Alvarado was performing
miracles and he had ordered her body carried in a magnificent procession into the most unknown corners of his vast statueless country so that no one should be left
who did not know the worth of your virtues after so many years of sterile mortification, after so many painted birds without benefit, mother, after so much love without
thanks, although it never would have occurred to me that the order was to be changed into the jape of the false dropsy victims who were paid to get rid of their
water in public, they had paid two hundred pesos to a false dead man who arose from his grave and appeared walking on his knees through the crowd frightened by
his ragged shroud and his mouth full of earth, they had paid eighty pesos to a gypsy woman who pretended to give birth in the middle of the street to a two-headed
monster as punishment for having said that the miracles had been set up by the government, and that they had been, there wasn’t a single witness who hadn’t been
paid money, an ignominious conspiracy that none the less had not been put together by his adulators with the innocent idea of pleasing him as Monsignor Demetrius
Aldous had imagined during his first scrutinies, no, your excellency, it was a duty piece of business on the part of your proselytes, the most scandalous and sacrilegious
of all the things they had made proliferate in the shadow of his power, because the ones who had invented the miracles and backed up the testimonies of lies were the
same followers of his regime who had manufactured and sold the relics of the dead bride’s gown worn by his mother Bendicién Alvarado, aha, the same ones who had
printed the little cards and coined the medals with her portrait as a queen, aha, the ones who enriched themselves with curls from her head, aha, with the flasks of
water drawn from her side, aha, with the shroud of diagonal cloth where they used door paint to sketch the tender body of a virgin sleeping in profile with her hand
on her heart and which was sold by the yard in the back rooms of Hindu bazaars, a monstrous lie sustained by the supposition that the corpse remained uncorrupted
before the avid eyes of the endless throng that filed through the main nave of the cathedral, when the truth was quite something else, your excellency, it was that the
body of his mother was not preserved because of her virtues or through the repair work done with paraffin and the cosmetic tricks that he had decided upon out of
pure filial pride but that she had been stuffed according to the worst skills of taxidermy just like the posthumous animals in science museums as he found out with
my own hands, mother, I opened the glass casket as the funereal emblems fell apart with the air, I took the crown of orange blossoms from your moldy brow where
the stiff filly-mane hairs had been pulled out by the roots strand by strand to be sold as relics, I pulled you out from under the damp gauze of your bridal veil and
the dry residue and the difficult saltpeter sunsets of death and you weighed the same as a sun-dried gourd and you had an old trunk-bottom smell and I could sense
inside of you a feverish restlessness that was like the sound of your soul and it was the scissor-slicing of the moth larvae who were chewing you up inside, your limbs
fell off by themselves when I tried to hold you in my arms because they had removed the innards of everything that held together your live body of a sleeping happy
mother with her hand on her heart and they had stuffed you up again with rags so that all that was left of what had been you was only a shell with dusty stuffing that
crumbled just by being lifted in the phosphorescent air of your firefly bones and all that could be heard were the flea leaps of the glass eyes on the pavement of the
dusk-lighted church, turned to nothing, it was a trickle of the remains of a demolished mother which the bailiffs scooped up from the floor with a shovel to throw it
back any way they could into the box under the gaze of monolithic sternness from the indecipherable satrap whose iguana eyes refused to let the slightest emotion show
through even when he was all alone in the unmarked berlin with the only man in this world who had dared place him in front of the mirror of truth, both looked out
through the haze of the window curtains at the hordes of needy who were finding relief from the heat-ridden afternoon in the dew-cool doorways where previously they
had sold pamphlets describing atrocious crimes and luckless loves and carnivorous flowers and inconceivable fruits that compromised the will and where now one only
heard the deafening racket of the stalls selling false relics of the clothes and the body of his mother Bendiciéon Alvarado, while he underwent the clear impression that
Monsignor Demetrius Aldous had read his thoughts when he turned his sight away from the mobs of invalids and murmured that when all’s said and done something
good had come out of the rigor of his scrutiny and it was the certainty that these poor people love your excellency as they love their own lives, because Monsignor
Demetrius Aldous had caught sight of the perfidy within the presidential palace itself, had seen the greed within the adulation and the wily servility among those who
flourished under the umbrella of power, and he had come to know on the other hand a new form of love among the droves of needy who expected nothing from him
because they expected nothing from anyone and they professed for him an earthly devotion that could be held in one’s hands and a loyalty without illusions that we
should only want for God, your excellency, but he did not even blink when faced with that startling revelation which in other times would have made his insides twist,
nor did he sigh but meditated to himself with a hidden restless-ness that this was all we needed, father, all we need is for nobody to love me now that you’re going
off to take advantage of the glory of my misfortune under the golden cupolas of your fallacious world while he was left with the undeserved burden of truth without a
loving mother who could help him through it, more lonely than a left hand in this nation which I didn’t choose willingly but which was given me as an established fact
in the way you have seen it which is as it has always been since time immemorial with this feel ing of unreality, with this smell of shit, with this un-historied people
who don’t believe in anything except life, this is the nation they forced on me without even asking me, father, with one-hundred-degree heat and ninety-eight-percent
humidity in the upholstered shadows of the presidential berlin, breathing dust, tormented by the perfidy of the rupture that whistled like a teakettle during audiences,
no one to lose a game of dominoes to, and no one to believe his truth, father, put yourself in my skin, but he didn’t say it, he just sighed, he just blinked for an instant
and asked Monsignor Demetrius Aldous that the brutal conversation of that afternoon remain between ourselves, you haven’t told me anything, father, I don’t know

the truth, promise me that, and Monsignor Demetrius Aldous promised him that of course your excellency doesn’t know the truth, my word as a man.

Figure 7.1: 1500 words, from Gabriel Garcia Marquez, Autumn of the Patriarch. See footnote [l on p
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Exercises

1.

2.

CKY and global ambiguity.

a. We used the example grammar gOcnf . py in Chomsky Normal Form in our experiments with CKY parsing.
Copy that grammar to gSScnf(YOURINITIALS).py and then change the grammar so that it simply parses
the language a* = {a, aa, aaa, aaaa, . ..}, assigning to each string all binary trees. That is, for the string aa
there should be just one parse, but for aaa there should be two parses [a[aa]] and [[aa]a], and so on. Use
the parser ckyp to check up to a” = aaaaaaa to make sure that all parses are found. In a comment at the

bottom of your file gss(YOURINITIALS).py, indicate how many parses you find for aa,aaa, aaaa, . .., a".

b. Turning to gOcnf .py again, using ckyp.py, try to find the sentence of 10 words or less with the maximum
number of ambiguities. Tell me what it is, and how many structures it has, in a comment at the bottom of
gss(YOURINITIALS).py.

Probabilistic CKY. For any grammar, assume each rule in X—-. .. has probability % where n is the number of
rules with X on the left hand side. Modify cky.py to pcky(YOURINITIALS).py so that instead of simply adding
the lThs A to the matrix in step 2, it adds the category with its probability (A,pa) where pa is the probability
of A—w;. And then in step 8, if (B,prob) is already in m[start|[end]|, modify that entry if necessary so that B
is paired with the maximum of prob and p*pb*pc where p is the probability of A—=BC, (B,pb)€m|start|[mid],
and (C,pc)em[mid][end]|. For any sentence that has a derivation, then, this parser will compute (S,ps) where ps
is the probability of the most probable derivation.

3. TD tree collection for the Earley recognizer. The parser ckyp.py extends the recognizer cky.py by adding
a top-down tree collector, which in effect parses the structures already in the chart with a top-down backtracking
parser. Create a file earleyp(YOURINITIALS).py that adds top-down tree collection for the Earley recognizer.
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Chapter 8 Minimalist grammar

8.1 Mildly context sensitive languages

There are various arguments for assuming that at least some human languages — that is, some sets of strings defined
by grammars plausible as models of human language recognition — are not context free:

e Shieber’85 shows that a variety of Swiss-German has case-checking dependencies between verbs and their objects
of the form

S 0102...V1V2...

Previous crossing dependencies had been noted: verbal clusters in Dutch [I0} [], respectively in English [2] [17])
but in those cases it is not clear that the dependencies are syntactic.

e Culy’85 shows that Bambara has a morphological process of whole word reduplication. Morphophonologi-
cal reduplication is very common, but Culy argues that in this instance the reduplication is productive and
unbounded.

e Rambow’94 argues that scrambling in some dialects of German is not only not strongly CF definable but also
not strongly MG definable [19] [3]

e There seems to be some evidence of full phrase reduplication in some languages too: English X-or-no-X [14],
and Chinese A-not-A questions [18, [, [24].

Some of the relevant examples are displayed in Figure on page

But there are many reasons for assuming that the grammars of human languages are not CF. When we think
about what sorts of rules plausibly define human languages, what sorts of generalizations seem to be respected
in human languages, context free grammars do not provide reasonable ways to state them. Chomsky’56 argues
not that a reasonable grammar of English will not be CF, and every mainstream linguistic tradition has adopted
more expressive notations. More powerful formalisms tend to allow much more compact descriptions [8] 25] [20],
that is, they allow us to capture generalizations. Presumably, the existence of simple, insightful descriptions is (not
coincidental but) to be explained by something about how the language learner represents the language. So until we
get more direct evidence about the mental representation of grammar, we would like a formalism that allows fairly
direct representation of the linguists’ most insightful descriptions of the patterns found in language. Insightfulness
is subjective; if you are worried about that, think: succinctness

Aravind Joshi’85 defines the class of mildly context sensitive (MCS) languages with the following properties:

e They properly include the context free languages
e They can be parsed in polynomial time
e They can define some (but not all) crossing dependencies

e They have the constant growth property: for each MCS language, there is a finite constant k such that if a string
s has length 7 and some string s’ has length greater than i + &, then there is at least one string of intermediate
length between them.

The third condition of this definition is not precise, but the class of languages definable by tree adjoining grammars
(TAGs) is generally regarded as MCS, as is the larger class of languages definable by minimalist grammars (MGs).
Joshi’85 proposes:

1Succinctness may not be subjective, but the options for obtaining succinct representations are limited by the mechanisms of the
device that interprets/compiles the grammar specification. So, putting the point more carefully, I should have said something like: “if
you are worried about insightfulness, think: succinctness relative to plausible assumptions about cognitive architecture.” But now we
have “plausible assumptions” in there. So what I should really have said is: “it’s a mistake to think there’s a way to firmer ground.”

93
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(MCS hypothesis) Human languages are not only ‘weakly’ MCS in the sense of being in this class, but also that
they are ‘strongly’ MCS, in the sense that a formalism powerful enough to define exactly the MCS languages
will also suffice to define the correct structures for human languages.

The MCS hypothesis seems quite widely accepted. Even if it is not quite right, it seems very close to what we
need. Jager and Rogers’12 say: “Most experts. .. assume at this time that all natural languages are MG languages”
— See their figure and this quote in Figure on page We will present MG languages now, language defined
by minimalist grammars.

8.2 Minimalist grammar on bare phrase structure

First of all, we will get rid of some redudancy in conventional tree representations, using not trees on the left where
each category symbol appears 3 times, or the second tree where the lexical item appears twice, but trees where the
internal nodes have an “arrow” pointing to the head:

NOT: NOT: But: and generally:

DP the /<\ S
D’ t@ea the:D idea /\
specifier <
D NP
the 1\‘1' phon:features complement
\
)
idea

The arrows (‘order’ symbols) <, > point towards the head of the phrase. The largest subtree with a given head
is a maximal projection, or phrase XP. And we will assume that each phrase can have at most one complement,
but any number of specifiers.

minimalist grammar = (Lexicon,{merge,move}) (first pass)

Lexicon: associates vocabulary with feature sequences:

vocabulary (phon+sem) Marie,Pierre,who,praises,. . .

category N,V,APCD,I,...

selector =N,=V,=A =P,=C,=D=I,...
licensor +wh,+case,. ..

licensee -wh,-case,. ..

in the order word::features*

Examples: Marie::D
who::D -wh
praises::=D =D V
e:=I +wh C

Merge triggered by =X, attaches X on right if simple, left otherwise

praises::=D =D V + Pierre::D = <

praises:=D V Pierre
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< + Marie::D = >
praises:=D V  Pierre Marie <

praises:V ~ Pierre

Each structure building operation applies to expressions, deleting a pair of features (shown in red), and building headed
binary tree structures like those shown here, with the order symbols “pointing” towards the head.

The features are deleted in order, and the only affected features are those on the head of the two arguments.

Here and throughout, when writing an item of the form string:features, when features is empty, I often write just string.

Move triggered by +f, moving maximal -f subconstituent to specifier:

<
G - —
Marie /<\ Whiment 6!6>>\
praises < Marie <
which:-wh student praises

(SMC) Move cannot apply unless there is exactly 1 head with -f feature first
When the head of an expression begins with +f, and there is exactly one other node N in the tree with -f as its first feature,
we take the phrase that has N as its head and move it up to the left.

This is a unary, simplification step, but like merge, it deletes a pair of features and adds an “arrow”.

Notice that we use :: in lexical items and : on the leaves of larger trees — this distinction is necessary now, but will be useful
later.

minimalist grammar = (Lexicon,{merge,move}) (second pass, slightly more precise)
e vocabulary ¥ = {every,some,student, ...} (phon,sem features)
o types T ={::, :} (“lexical” and “derived,” respectively)

e syntactic features I

c, T, D, N, V, P,... (selected categories)
=C, =T, =D, =N, =V, =P,... (selector features)
+wh, +case, +focus,... (licensors)
-wh, -case, -focus,... (licensees)

e expressions E: trees with non-root nodes {<,>}, leaves ¥* x T' x F*
e lexicon Lex C X* x {::} x F*, a finite set of 1-node trees

e Tree Notation: sometimes we write word : € simply as word,
and we often leave nodes with € : € unlabeled altogether

Notation:
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t[£f] is a tree with 1st feature f at its head,
and the tree t is the result of removing f and changing :: to :

t{t1/t2} is the result of replacing t; by t3 in ¢

t7 is the maximal projection of the head of #;

€ is the 1 node tree labeled with no syntactic or phonetic features

o Lex C X* x {::} x F*, a finite set of 1-node trees

<

AN
t1 12 if t; has exactly 1 node

merge(t[=£], t2[f]) = >

ta 11 otherwise

X if (SMC) only one head has -f

move(i[+£]) = 752;\751 {t2[-£]" /€} as its first feature

The two generating functions are partial functions from expressions to expressions. Merge is a binary function, and move is
a unary function. (If you want, you could take the union of these two function to get one big ‘merge’ function, defined by 3
cases, and let the first two be called ‘external merge’ — defined on pairs of expressions, and the third case — defined on single
expressions, be called ‘internal merge’.)

These specifications take some ‘decoding’! Especially in the case of move. What is says is this: if you have a tree t[+f]
with a head whose first syntactic feature is +f, and if that tree has a subtree t2[— f] whose head has first feature —f (and
by the SMC only one head has —f as its first feature), then the result of applying move is the tree that has the maximal
projection of t2 as its specifier, with a sister tree that is the result of replacing the maximal projection of t2 by the empty
node. In sum:

e There are finitely many lexical items, and each one is a pairing of some pronounceable vocabulary (possibly empty) with
a finite sequence of syntactic features.

e FEach structure building operation “checks” and cancels a pair of features.
e Features in a sequence are canceled from left to right.

e Merge applies to a simple head and the first constituent it selects by attaching the selected constituent on the right, in
complement position. If a head selects any other constituents, these are attached to the left in specifier positions.

e All movement is overt, phrasal, leftward. A maximal subtree moves to attach on the left as a specifier of the licensing
phrase.

e Our restriction (SMC) prevents movement when two outstanding -f requirements would compete for the same position.
This is a strong version of the “shortest move” condition discussed in [6].

NB: SMC looks like a stipulation here, but we will reveal it in a different light soon. ..
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example MG1

CP
/\
DPy C’
| T
D C VP
T
D DP \%&
| | TN
who D" ‘V D‘P
D praises to
Marie
n Pierre::D who::D -wh n
Marie::D €::=V +wh C
praises::=D =D V and::=C =C C E
€::=V C

This tiny grammar generates an infinite language, because of the coordinator and

Here we show a “bare tree” of the sort just introduced, but it is easy to compute instead a representation more similar to the
ones common in the linguistic literature, as shown on the right.

These structures represent the results of a derivation, but it is also easy to keep a complete record of the whole derivation,
and to do this, we do not need the whole tree structures with all those empty nodes. It suffices to have categorized tuples of
strings — as below

move(Q):
merge(578):|E| >
/\
merge(?,l): < who <
PN PN
merge(2,4): />\ e:+wh C/>\ eC />\
< Marie < Marie < Marie <

N

praises:=D V  who:-wh praises:V ~ who:-wh praises who:-wh praises

A tree is completed iff it has just 1 category symbol left, the “sentence” or “start” category
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example: SOVI “Naive Tamil” inspired by Mahajan

N

1M PredP

— | feature checking

We have only phrasal movement, not the head movement that many linguists use to position inflection. But some
linguists have considered the possibility that inflection is positioned by phrasal movement.

For example, Mahajan [13] considers the possibility that the verb gets placed next to inflection by phrasal movement.
Assuming that the Subject and Object are already in the VP (a “VP-shell”) before this movement happens, we can
derive a very simple SOVI order with the lexical items here.

Notice that the -s in the string component of an expression signals that this is an affix, while the -v in the feature
sequence of an expression signals that this item must move to a +v licensing position.

CP
"\
< C IP
N T
e:C > PredP; T
> < DP PredP I PredP
Marie:e > -8 Marie DP Pred’ -s t1
. /\ .
Pierre:e < Pierre Pred vP
€ praise praise
Pierre::D Marie::D
praise::v criticize::v
e€::=I C -s::=Pred +v I

€::=v =D =D Pred -v

This simple proposal just intended to show one way that the most basic idea of Mahajan’s proposal could be encoded
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Example 2 from Baker

Almost any category can combine with a complement. ..

a eat [some spinach] (verb)

b pieces [of cake] (noun)

¢ fond [of swimming] (verb)

d  under [the table] (preposition)

e will/to [eat some spinach] (tense)

f  the [piece of cake] (determiner)

g too [fond of swimming] (degree)

h  that [Kate ate spinach] (complementizer)

...only verbs are true predicates, with the power to license a specifier, which
they typically theta-mark. In contrast, nouns and adjectives need help from a
functional category Pred in order to do this.

42 a. Eméri *(ye) mosé
Mary PRED beautiful 4

‘Mary is beautiful’
Here I paste together clips from [Il pp.24,20,40] in an attempt to very briefly(!) summarize Baker’s view.

Example 42 is from the Nigerian language Edo [I p.40], where, Baker suggests, matters are slightly simpler than in the
similar English contrast

1. Mary *(is) beautiful

/\ TP
T /\
e N /T\
NP \ NP Pred’ <Th>
. ‘ Pred AP/NF
Chris hunger :
<Tr?> Chris ‘
hungry
teache

X is a verb iff X is a lexical category and X has a specifier.
Agent and theme roles can only be assigned to specifier positions.

These diagrams from [I], p35], the claims are from p23 and p26 respectively.

In transcribing the tree, I corrected what I take to be an error in the published version: I put a Pred’ in the tree where the
published version has a PredP’. (With a machine deriving the trees, such errors would be less common!)

e MGs have merge, not [merge as spec| and [merge as comp|
e we could add [merge as spec|, but this loses linear asymmetries
e but V can merge an N and then check a theta feature in spec

Chris::N -th -k hunger::=N +th V €::=V +k T
TP
/\ TP
- /\
e > NPO T
VP /\ ‘ /\
T Chris < N T VP
NP vV eT > NPy Vv’
/N || N
‘ ‘ < Chris to V NP
Chris hunge! N ‘ ‘

<Th> hunger hunger to
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If we added a rule of merge spec, we could try to keep an account of the linear asymmetries by stipulating that it is
dispreferred, but that is not how the science should work! If this is dispreferred, we would like it to be dispreferred for a
reason.

e MGs cannot merge an spec and simultaneously license it
e but Pred can merge an A and then check a theta feature in another spec

Chris::N -th -k hungry::A €::=A =N +th Pred €::=Pred +k T

Baker’s proposal (below left), gets a precise implementation with this lexicon, with these structures (below
middle and right):

TP
/\
NPg T
)~
. YT P
N > N NP,  Pred’
e T /\ ‘ | =5
Srodp Chris /<\ Chris to 1\‘TP Pred’
T re
T R to Pied AP
NP Pred’ <Th>
| > A
Pred AP /\ ‘
Chris < A
/\
hungry hungry hungry

Our slender and elegant bare trees might make you think that the traditional depictions are making things look much more
complicated than they are...You’re right! We will see this next time.

An open question: (possible squib topic)
a. Suppose there are two types of categories: lexical and functional
b. Suppose only 1 lexical category, V, can select a specifier (just one) or check its own complement

c. Suppose only 1 lexical category, N, has referential index,
so can fill +th arg positions

d. Suppose only 1 lexical category, A, is -N -V: no specifier, and
cannot fill +th arg positions

e. Suppose the functional categories vary across langs. Each can have a complement, and can license (but
never select) a specifier (and only at most one specifier).

Q: can grammars of this form generate all the MG languages?
simpler Q: is every MG language generable by a grammar with at most 1 category that can select a specifier?
These ideas inspired by Baker need fleshing out before they will have syntactic impact. For example, is the category with

specs also the only one that can check +th features? One strategy for problems like these: Take an arbitrary MG, and see if
you can specify a recipe for converting it into another one that generates the same language but satisfies these conditions.
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Example: the copy language
To construct an MG for L., = {zz| z € {a,b} T} is slightly complicated. We use movement to keep the two
halves of each sentence ‘synchronized’ during the derivation. So we will let each structure have a substructure with
two pieces that can move independently.
Call the features triggering the movement

-1(eft) and -r(ight).

and then the recursive step can be pictured as having two cases, one for AP’s with terminal a and one for BP’s

with terminal b, like this:
+
c-l -
r b r
A B

|
c

a + +

i

T

BP
B

N
- P

@
b -l -
Notice that in these pictures, the start category T has a +1 and a -1, while A and B each have a +r and -r. That

makes the situation nicely symmetric. We can read the lexical items off of these trees:

ar=A +1T-1 b:=B +1 T -1
arz=T 41 A -r b::=T +r B -r

P
™ +
AP
A

N

-r TP

@
a -l -r

With this recursion, we only need to add the base case. Since we already have recursive structures that expect CPs
to have a +r and -1, so we just need

e:=T 4+r +1T
to finish the derivation (at the ‘top’ of the tree), and to begin a derivation, we use this:
€T -r-1

This grammar has just 6 lexical items. (See if you can find a simpler formulation!) It allows us to do derivations
like this, showing the derived structure on the left, and the corresponding conventional tree on the right:

TP
/\
> TP(4) T
> > TP(2) T BP(3) T
T T N N T T~ RN
> < > < TP(0) T T BP AP(1) B’ T TP
N 0 N N N 2 N N N |
< b > < T ™ T AP b t(3) TPO) A B TP t(4)
N /NN ] 2 N
a < b T a t(1) t(0) A TP b t(2)
N | |
a a t(0)

This works as we hoped@

The derivations with this grammar are rather tedious, and interesting because they have lots of movements! (Is
it reasonable to suppose that the kinds of structures shown in Figure 8] on page are derived in this way?) We
can get the computer to check our calculations. The recognizer mgcky will be presented in the next section takes
the xx grammar in this form:

2Mattescu and Salomaa [I5] present a context sensitive grammar for the language {zz| x € {a,b}*}. If you compare that one to
ours, you will see that ours is much easier to understand.
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mmnn

file: mgzz.ml
created: 2013-02-19 10:52:17 PDT E Stabler stabler@ucla.edu

Grammar for the copy language {XX| X\in{a,b}*}

This grammar has lots of local ambiguity, and does lots of movement
(more than in any human language, I think)

so it gives the parser a good workout.

I use (1,f) for select f, (-1,f) for category f

(2,f) for license f, (-2,f) for licensee f
mgxx = [([],[¢-1, °T?),(-2,°r’),(-2,71°)]1),

(01, 0¢1,°1°),(2,°r),(2,°17),(-1,°T")]),
(0’2’1, 0(1,°T2),(2,°r?), (-1, *A?),(-2,7r°)])
(0p°1, [(1,°T7),(2,°r?), (-1, ’B?),(-2,’r’)]1)
(0’2’1, [(1,7A2),(2,°17), (-1, °T),(-2,71°)])
]([’b’],[(1,’3’),(2,’1’),(—1, T2, (-2,°17)1)

And we can use the grammar like this:

>>> from mgxx import *

>>> from mgcky import *

>>> prettyMG(mgxx)

T -r -1

=T +r +1 T

a::=T +r A -r

b::=T +r B -r

a::=A +1 T -1

b::=B +1 T -1

>>> recognize(mgxx,[’a’,’b’,’a’,’b’],’T’)
--- scanning (0, 0) and then (0, 1) a

(0, 0) ::T-r -1

(0, 0) :: =T+r +1 T

(0, 1) :: =T +r A -r

(0, 1) :: =A+1T -1

(0, 1) :+r A -r (0,0):-r -1

(o0, 1) :A-r (0,0):-1

(0, 0) :+r +1 T (0,0):-r -1

(4 ,4) : 41T (1,1):-1

(4 ,4) :+4r +1 T (2,4):-r (0,2):-1
(2,4) :+1 T (0,2):-1

(o, 4) T

(4 ,4) :+4r +1 T (3,4):-r (1,2):-1

True

>>> recognize (mgxx,[’a’,’b’],’T?)

--- scanning (0, 0) and then (0, 1) a
(0, 0) ::T-r -1

(0, 0) :: =T+r +1 T
(0, 1) ::=T+r A -r
False

>>>

We will explain how this calculation is done in the next section.

Exercises: MG on bare phrase structure

Do at least 2 of the following. (...or more for extra credit)

1. Provide an MG for VISO, as similar to our SOVI on page as possible, and show a sample derivation in

complete detail (as we did at the bottom of page [@7 and in class)

2. Provide an MG for SVIO, as similar to our SOVI on page as possible, and show a sample derivation in

complete detail (as we did at the bottom of page[07 and in class)
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Hint for the previous 2 problems: Notice that, in the SOVI example on page[@8] the underlying order, before movements,
is ISO(Pred)V. And in that example, [SOV] is a Pred phrase, S is a DP, O is a DP, and V is a VP. Since these are all
phrases, any of them can move. To get SOVI, we moved the PredP [SOV] to the specifier of I. You can do the problems
1 and 2 without changing the underlying ISOV order, just by changing what moves where.

Provide an MG for ¥* where ¥ = {a, b}, the set of all sentences consisting of a’s and b’s (including €) and show
a sample derivation for a string of length 3 in complete detail (as we did at the bottom of page [@7 and in class)
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English (Chomsky’56)

Dutch (Huybregts’76)

Swiss-German (Sheiber’85)

Simpler but similar: the “xx’

will Marie have -() be -en prais -ing Pierre

| | |

because I Cecilia Henk  the hippo saw help feed

. omdat ik Cecilia Henk de nijlpaarden zag helpen voeren

that we the children Hans the house let help paint

. das mer d’chind em Hans es huus 16nd héalfe aastriiche

" language

abbabb

e |

Figure 8.1: Some crossing dependencies
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ab"
context-free

TAG

THE ROYAL B
SOCIETY

PHI
TRANSACTION
—OF

View larger version:
»In a new window
» Download as PowerPoint Slide

Figure 6.

The mildly context-sensitive sub-hierarchy.

It should be noted that Michaelis & Kracht [19] present an argument that Old
Georgian is not an MG language. This conclusion only follows, though, if a certain
pattern of complex case marking of this language is applicable recursively
without limit. Of course, this issue cannot be settled for a dead language, and so
far the investigation of living languages with similar properties has remained
inconclusive. Most experts therefore assume at this time that all natural
languages are MG languages.

THE ROYAL B
SOCIETY

NS

ANSACTI
—oOF

Figure 8.2: from Jager&Rogers’12



Chapter 9

9.1 MG derivations, simplified

Consider this simple grammar, mg0:

From this MG, we can derive structures like the ones on the left, which correspond to the more conventionally

represented trees on the right:

e:=V C

the ::=N D

king ::N

wine ::N

drinks :=D =D V
knows ::=C =D V

MGs, MCFGs, CKY and Earley

€:=V +wh C
which ::=N D -wh
queen ::N

beer ::N

prefers :=D =D V
says :=C =D V

< | DP/\V7
Ea g b7 be
_ <. _ ) .< D/\NP drl‘nks lg’
the:e  kingie  drinks:e < t}‘le 1\\17 ]{\NP
the:e  beer:e & tk‘le l\‘I’
ki‘ng 1‘\1
be‘er
CP
&
e
AN Y
: /<\ K\NP pre%ers 6’
the:e  queen:e prefers:e < |
the N’ NP
there  wine:e & tl‘le 1\\1,
‘ N
queen
W‘ine
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& e

€:

B B m
N K\NP knows DI/\C

the:e king:e  knows:e >
5 /\ the N, (j/\
< <
LT PN N ﬁ m
which:e wine:e €€ >
o king  which N’ 15 mp
< < NN ‘
T~ PN prefers t(0)
the:e  queen:e prefers:e \
wine the "
1‘\1
queen

The structures on the left are simpler than the ones on the right — fewer nodes, and less redundancy in marking the
relevant categories. But still there is lots of branching in these structures. We want to ask: what does the syntax
need to be able to see in these structures?

Looking at the merge and move rules, we can see that the syntax needs know (i) the features of the head, and (ii)
it needs to be able to find the subconstituent that is going to move, and (iii) it needs the strings in order to define
the linear order properly. But once a phrase has no more syntactic features, the grammar never needs to see its
structure any more.

So, roughly: the syntax needs to be able to see (i) the phrases with non-empty syntactic feature sequences at their
heads, and (ii) the strings. This allows us to eliminate the trees completely, as long as we keep the phrases with
features — in particular, that means phrases that are going to move. To achieve this, we must distinguish another
special case of merge, namely, merging with a phrase that is going to move. Let’s explain this. ..

Merge: two different cases

praises::=D =D V + Pierre::D = <

praises:=D V  Pierre

praises::=D =D V + who::D -wh = <

praises:=D V  who:-wh

Unlike Pierre, the DP who is a mover!

In both cases, merge applies to give us simple 3 node derived trees, but these two results are importantly different.
In the first case, nothing in the grammar can ever separate praises from Pierre. But in the second case, who can
be separated. This phrase, with its pronounced elements and its features, needs to be visible to the grammar.
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the essential parts of the trees

what the syntax must see

<

praises:=D V  Pierre = praises Pierre:=D V

<

praises:=D V. who-wh = praises:=D V, who:-wh

Each tree can be replaced by a tuple of categorized strings, as long as we keep moving phrases separate. (To
reduce notational clutter, we do not bracket the tuples, but the commas are important!)

Each categorized string in any expression generated by the grammar is sometimes called a “chain.” It represents a
constituent that may be related to other positions by movement. So each tree is replaced by a tuple of chains.

The “traditional” approach to parsing movements involves passing dependencies (sometimes called “slash dependen-
cies” because of the familiar slash notation for them) down to c-commanded positions, in configurations roughly

like this:
C
---dpm/ dp

Glancing at the trees in the previous sections, we see that this method cannot work: there is no bound on the
number of movements through any given part of a path through the tree, landing sites do not c-command their
origins, etc. This intuitive difference also corresponds to an expressive power difference, as pointed out just above:
minimalist grammars can define languages like a"b"c"d"e™ which are beyond the expressive power of TAGs, CCGs
(as formalized in Vijay-Shanker and Weir 1994), and standard trace-passing regimes.

the first example derivation, reformulated

Lexicon:

Marie::D who::D -wh n
praises::=D =D V €::=V +wh C

Derivation, 4 steps:

merge((2],[4) = praises:=D V, who:-wh
merge(A][1) = Marie praises:V, who:-wh
merge(5],[B) = Marie praises:+wh C, who:-wh
move((C]) =  who Marie praises:C  [D]
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derived X-bar tree derived bare tree derivation tree
CcP who Marie praises:C

DP, T ]

15, C/\/P N Marie praises:+wh C,who:-wh

i‘) | DP/\/’ wh{\< e:=V +wh C Marie praises:V,who:-wh
who ]5’ mP 6!6\> . -

l. \ PN praises:=D V,who:-wh Marie::D
praises tg Martie <X
arie praiSes praises::=D =D V  who::D -wh

In syntax101 we use informal grammars with X-bar trees something like we have on the left.
The formal MGs can, in 4 steps, derive “bare trees” like the one in the middle, defining the same X-bar trees.

Now we see that the bare trees can be replaced by tuples of categorized strings. With this representation, the two
trees on the left are represented by the root node of the derivation tree on the right. The first two trees are derived
trees, but tree on the right is a derivation tree showing all 4 steps of the derivation. The branching steps are merges,
the non-branching step is the move, the leaves are lexical items.

Thm: The lexicons of bare tree MGs and tuple MGs are identical, and the derivations correspond in this way.
There is a function f from bare trees to tuples such that

1. f is the identity function on lexical items,

2. every tuple MG derivation tree is just the result of relabeling a bare tree MG derivation tree using f, and
3. f maps any completed tree with yield s to s : C, where C is the start category, and
4

. for any particular lexicon G, every completed tuple MG derivation tree is the value of f applied to a completed
bare tree MG derivation tree.

So the tuple formulation of MGs defines exactly the same sentences in exactly the same way (with a derivation tree
of exactly the same shape) as the bare tree formulation of MGs.

9.2 CKY-like recognition

In the previous section, we saw how tree-based MGs can be replaced by tuple-based MGs, defined as follows [2§],
without changing the language or the shape of the derivations of each string in the language. The tuple-based rules
can be formulated like this:

minimalist grammar G=(Lex, {merge,move})
e vocabulary ¥ = {every,some,student, ...}
o types T ={::, :} (‘lexical’ and ‘derived’, respectively)

e syntactic features F' of four kinds:

c, T, D, N, V, P,... (selected categories)
=C, =T, =D, =N, =V, =P,... (selector features)
+wh, +case, +focus,... (licensors)
-wh, -case, -focus,... (licensees)

e chains C = ¥* x T x F*
e expressions F = C*

e lexicon Lex C X* x {::} x F*, a finite set
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merge: (E X E) — E is the union of the following 3 functions,
for-€{:,u},yeF*, d€ FT

su=fr t-fiaq,...,af
st:iy,Qq, ..., 0k

mergel: lexical item selects a non-mover as complement

S::f/}/aalu"wak t'fuLla"'abl
1S 1Y, 1y ey Oy Ly e ey U]

merge2: derived item selects a non-mover as specifier

S':f’}/ualu"'uak t'fé,bl,...,bl
LR e s DU 7 AL NS P

merge3: any item selects a mover

Here, aq,...,ak,t1,...,4 (0 < k1) are any chains.

Notice that the domains of mergel, merge2, and merge3 are disjoint, so their union is a function.

move: EE — E is the union of the following 2 functions,
for v € F*, § € F*, satisfying the following condition,

(SMC) none of the chains a1,...,a;—1, i1, .., has —f as its first feature,

S:+f77a17'-'7ai717t:_f,Oéi+1,...,Oé
1S 1,00,y O], Qi 1y e vy O

movel: final move of licensee

82+f’7,041,...,04i_1,t2—fé,aH_l,...,CMk
S Y, Qe Q1,0 g, e, O

move2: nonfinal move of licensee

Notice that the domains of movel and move2 are disjoint, so their union is a function.

structures S(G)=closure(Lex,{merge,move})
completed structures = expressions w - C, for C the “start” category and any type - € {:,::}

sentences L(G) = {w| w-C € S(G) for some - € {:,::}}, the strings of category C

The grammar rules are in this deductive format immediately specify a CKY-like method for recognizing MG
languages. We need only recognize that the strings are represented by pairs of positions in the input, we add
axioms for the lexical input sequence, (0,1) : wy ... (0,n) : wy:

m axioms: for w in position (i,j) where w:: v € Lex, 0<i<j<n
Note that empty lexical items go from ¢ to j =4, for every 0 < i = j < n, where n is the length of the string.

We make two additional, minor changes for efficiency. First, rather than imposing the SMC on the move step,
we will not produce any result which has two -f chains, for any f. And second, since the lexical/derived distinction
only matters for items that have selector features, we do not represent this distinction on any other items.

This kind of MG recognition requires no more than On?**2 steps, where k is the number of licensors and n is
the length of the input [8, [7]. Various MG recognizer implementations have been written, parsing MGs directly
[25] 20, [6] or by translating them into MCFGs or closely related formalisms [, [I, [15] but we describe a very direct
and ‘naive’ approach adapted from Harkema [7], Kallmeyer [9, Fig.7.3] and Seki&al [23] pp.207-9]:

TOP-DOWN BACKTRACK CF RECOGNITION(G, )
agenda=chart=all results of axioms for 4
for je{0,... len(i)}:
apply scan to elements up to j, putting new results into agenda,chart
while agenda e:
apply merge,move, putting new results into agenda,chart
if Sem|0][len(i)] then True else False

U W N = O

This algorithm allocates a matrix all at once, but then builds entries from left to right.



© 0 N U W N

T T S S R R ST
0w N O ok W N H O

112 CHAPTER 9. MGS, MCFGS, CKY AND EARLEY

In our implementation, the agenda is a stack, as usual, while the storage of intermediate results is split into 2
parts:

o All (unary) movel and move2 steps are applied as soon as each new item is generated, and are kept in a list for
tracing purpose only.

o The pronounced part of each head is indexed by left and right edges, as usual in CKY, with the left,right edges
of moving elements explicitly labeled.

The grammar mg0 from page [[07 will be given in this form:

e fele: mg0.py
created: Thu Feb 28 09:17:43 PST 2013 E Stabler stabler@ucla.edu
I use (1,f) for select f, (-1,f) for category f
(2,f) for license f, (-2,f) for licensee f
mg0 = [(0,[(1,7v?),(-1,°C)H1),
(01, 0CL,°v?),(2,°wh?), (-1,°C?)]),
([’the’], [(1,°N?),(-1,°D’)1),
([’which’], [(1,°N?),(-1,°D?), (-2, wh*)]),
([’king’], [(-1,°N°)]),
([’queen’], [(-1,°N°)]1),
([’wine’], [(-1,°N*)]),
([’beer’], [(-1,°N)]),
([’drinks’], [(1,°D?),(1,°D?),(-1,°V’)]1),
([’prefers’], [(1,°D?),(1,’D?),(-1,°V)]),
([’knows’], [(1,°C?),(1,’D?),(-1,°V*)]),
§[’sayS’],[(1,’C’),(l,’D’),(—l,’V’)])

A pretty printer displays this grammar a more readable format:
>>> from mg0 import *
>>> from mgcky import *
>>> prettyMG(mg0)
.=V C

::=V +wh C

the::=N D
which::=N D -wh
king::N
queen: :N
wine::N

beer::N

drinks::=D =D V
prefers::=D =D V
knows::=C =D V
says::=C =D V

For use by the %)arser, we convert the list of items in the grammar to a python dictionary that associates each lexical
item with all of its possible sets of features.

>>> dict0f (mg0)

{Cthe’,): [[(1, °N°), (-1, °D’)11, (which’,): [[(1, °N’), (-1, °D’),

(-2, ’wh’)11, Cking’,): [[(-1, °N’)1]1, Cprefers’,): [[(1, ’D’), (L, °D’),
(-1, °v)11, Csays’,): [[(1, °C?), (1, °D’), (-1, °V°)1], (’wine’,):
[[(-1, °N°)1], (°drinks’,): [[(L, °D’), (1, °D’), (-1, ’V’)1], (’knows’,):
[L¢t, °c’y, (1, °n’y, (-1, °v>»H11, O: [0, °v?), (-1, ’*Cc)1, [, *v?),
(2, ’wh’), (-1, °C’>)1]1, (Cqueen’,): [[(-1, °N’)]1], (’°beer’,): [[(-1, °N’)I]}
>>> dictOf (mg0) [(*the’,)]

[eee, °n2), (-1, °bD2)11

>>> dictOf (mg0) [(Pwhich’,)]

[oa, N2y, (-1, °np’), (-2, ’wh’)11]

We run the recognizer like this:

>>> recognize(mg0, [’which’,’queen’,’prefers’,’the’, ’wine’],’C’)
--- scanning (0, 0) and then (0, 1) which

(0, 0)::=VC

(0, 0) :: =V +wh C

(0, 1) ::=ND -wh

--- scanning (1, 1) and then (1, 2) queen
(1,1)::=VC

(1, 1) ::=V+wh C

(1,2):::N
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(0, 2) :D -wh

--- scanning (2, 2) and then (2, 3) prefers
(2,2)::=VC

(2, 2) :: =V +wh C

(2,3) ::=D=DV
(2,3) :=DV (0,2):-wh

--- scanning (3, 3) and then (3, 4) the
(3,3)::=VC

(3, 3) :: =V+wh C

(3,4) ::=ND

--- scanning (4, 4) and then (4, 5) wine
(4,4) ::=vcC

(4 ,4) :: =V +wh C

(4,5) :: N

(3,5):D

(2,5):=DV

(2,5) :V (,2):-wh

(2,5) :¢C (0,2):-wh

(2,5) :+wh C (0,2):-wh
(0,5):¢C

True

>>>

9.3 MCFGs

A context free rule like
S — DP VP
can be regarded as an implication:
If string « is a DP and string y is a VP, then string xy is an S.
Or equivalently,
xyisan S if z is a DP and y is a VP.
We can write this in a ‘logical grammar’ notation as follows:
S(zy) « DP(z) VP(y)

That is, if we interpret the arrow as “if-then”, rewrite rules have the arrow backwards. If we find the right side,
then we have the left side. In this notation, a lexical rule

D — the
is most naturally given by a logical rule that has no antecedent,
D(the) «

which simply says that the is a string with category D. A logical notation like this has been used in various grammar
formalismsl] Here we follow [I3] in using it to define “multiple context free grammars” (MCFGs). An MCFG is a
CFG that categorizes not just strings but also possibly k-tuples of strings up to some k. For example, the following
grammar defines the xx copy language:

2]
—

(wy))<— T(z,y)

(x,z yw) + A(z) A(y) T(z,w)
Eaz)z ,yw) < B(z) B(y) T(z,w)
B(b) «

Te>HH4

oo

We can present a derivation of abab like this, where the leaves are all lexical items, and internal nodes are derived
by the rules.

1E.g. definite clause grammars [21], range concatenation grammars [3], literal movement grammars [4].
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S(abab)
T(al‘),ab)
A(@) A(a) T(b,b)

B Bl (o

In this grammar, we say that category T has dimension 2, meaning that it categorizes a pair of strings. All other
categories in this first example grammar have dimension 1.
Formally, let’s define an MCFG G = (X, N, P, S) with an infinite set X of variables x; as follows:

> is a finite nonempty set of vocabulary elements

N  is a finite nonempty set of categories A, where each has dimension dim(A) > 0

P is a set of rules of the following form, for n > 0

Bo(oq, e ,Oéko) — Bl(Il,h R 7$1,k1) .. -Bn(In,la e ;In,kn)
where o for each 0 <i <n, dim(B;) =k;
e cach z; ; is a variable
e cach o € (XU X)*
e each variable occurs at most once on the right, and at most once on the left
e all variables on the left appear on the right
S € N the start category, with dim(S) =1

We assume that X, N,Y are pairwise disjoint, as usual. Note that an MCFG in which every category A has
dim(A)=11is a CFGQ

MCFGs were defined and studied by Seki and colleagues [23] a restricted form of Pollard’s generalized context
free grammars [22]. Comparing these grammars to Chomskian syntax, it is easy to see that the trees in informal
Chomskian analyses serve as storage structures for the derivation. Making this explicit, we see also how significant
redundancy in those trees can be eliminated, providing a clearer perspective on how those derivations really work.

9.4 The equivalence of MGs and MCFGs

Michaelis [17] noticed that MCFGs are weakly equivalent to MGs, that is, they define the same languages. And his
proof of that result established a stronger correspondence. For every MG @G, there is an MCFG G’ which is not only
weakly equivalent but also strongly equivalent in the sense that there is an isomorphism between the derivataions
of G and G’ for every string in L(G). It is fairly easy to see why this is the case. Consider the rule mergel for
example:

su=fr t-fiti:aq,... bk ag

- - - mergel: lexical item selects a non-mover as complement
stiy,t1 a1, b o

If we think of the feature sequences as categories, this is, in effect, a scheme for a set of MCFG rules,

Yy 1y, Ot (Statla"'atk) <_:f’y:: (S) faalu"'uak(t7t17"'7tk)

for all possible features f and feature sequences v, aq, ..., a;. But the SMC guarantees that the number of features
sequences will always be less than 1 + the number of licensees in the grammar. And since all rules check features,
every relevant feature sequence is a suffix of some sequence that appears in the lexicon. This guarantees that, in

2Some other important MCFG subclasses are often studied [12} [13} [19]:

e An MCFG is non-deleting iff in the rules, all variables on the right appear on the left.

e An MCFG is non-permuting iff in every rule, for all 1 < i < n, and all z; ;,;  where j < k, on the left side of the rule, all
occurrences of x; ;j precede all occurrences of x; j.

e An MCFG is well-nested iff it is non-deleting, non-permuting, and in every rule, for all 1 < 4,4’/ < n where ¢ # ¢/, for all
1<j<k;—1landalll<j <ky—1,
it ... Qg & (E @]} X)*gcm‘(E U X)*(Ei/yj/(z U X)*{Ei’j+1(2 @]} X) Tyt /+1(2 U X)
The MCFG equivalents of MGs are clearly non-deleting. They are not usually explicitly non-permuting, but Michaelis [I8] §2.4] points

out that every MCFG can be presented in non-permuting form. Well-nestedness, though, is a restrictive condition, and MGs are often
not well-nested.
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MCEFG notation, the number of instances of mergel is finite. And similarly for merge2, merge3, movel, and move2.
In a sense, every MG is an MCFG. The only difference is in the way the MG rules, in effect, quantify over categories,
to define similar effects based on the first elements of the feature sequences. This ‘small’ difference actually has an
exponential effect on succinctness, as pointed out in [27].

9.5 MG Earley-like recognition

Harkema’0l presents an Earley-like recognizer for MGs But there is now a wide range of ideas for parsing MCFGs
(or larger classes of grammars) proposed by Ljunglof’04, Kanazawa’08, Kallmeyer&Maier’09 and Angelov’09. These
can all be adapted to MGsB As in CFGs, these Earley-like recognizers in effect compute oracles so that they can
avoid building constituents which could never be attached into the parse. We follow Ljunglof’12 most closely here,
adapting Ljunglof’s python Earley-like MCFG parser to use MGs directlyH

The Earley parser computes an oracle for itself by predicting each constituent top-down before recognizing it.
To use an MG top-down, we begin by predicting a completed derivation with start category C, and then the MG
rules are applied in reverse, unchecking lexical feature from right to left. To facilitate this feature checking, it is
convenient (and more succinct) to represent the lexicon with a graph.

= more coming <
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Chapter 10 Derivations, derived trees, and tree transductions

We can depict MG derivations with trees like the one on the left below, where e represents a merge step and o
represents a move step. The result of this 6 step derivation is the tree in the middle, but we usually represent the
structure with the X-bar tree on the right:

c\) > 15’ (\VP
. T 5 %p. o6V

/\
==V +wh C
‘ W/.\ whime:e e:C/\> wﬂich 1\‘1’ ]5’ mP
. o _— T & ]{\ } \
T~ < < 1\‘TP prefers  t(0)

/\
prefers::=D =D V e the::=N D queen:N

T T~ the:e  queen:e prefers:e wine the N’
which::=N'D -wh  wine:N

queen

It turns out that MG derivation trees — trees like the one on the left — are very simple. The set of derivation trees
for any grammar is a “regular set of trees.” And from a derivation, it is very easy to derive a bare tree like the one
in the middle or an X-bar tree like the one on the right. That is, the rather complex, non-CF structures in the
middle and on the right are derived in two regular steps. First we build a well-formed derivation, and then we can
(very efficiently!) “spell out” or transduce that derivation into a derived structurel] Let’s see how this works.

10.0 MG derivation tree languages are regular

10.0.1 Regular tree acceptors

We very briefly introduce bottom-up, finite state tree acceptors here. See for example [I2] for a thorough introduction
and many examples. Tree accceptors are usually defined by 4 parts, M = (X, Q, F, §), where X is a ranked alphabet,
Q is a set of states of rank 0 (i.e. leaves of the tree), F' C (@ is the set of final states, and ¢ is a set of rules of the
form

flar, - qn) = g

where f € ¥ has rank n and ¢1,...,¢,,q € Q.

We define a derives relation = on trees in terms of the rewrite relation — of acceptor M as follows The rewrite
relation introduces states into the trees as new leaves.

Given a tree over ranked alphabet ¥, a context is a tree over ¥ U {«} where x has rank 0, ¢ X, and s has
exactly one occurrence of z. For any context s over XU{z} and any t over ¥, let s{a — t} be the result of replacing
x in s by tree t.

Then we say t by ¢’ iff for some context s over ¥ U Q U {x}, there is a rule f(q1,...,qn) — ¢ in § such that

t = S{z’_)f(q077qu)}a and
' = s{zw—q}.

Informally, ¢ =, ¢ iff we derive ¢’ from ¢ by one rule application.

LCf. |28, 29, 27, [30]. Here we follow [23].

2Here we follow the rather elegant version of the standard definition given in [31].
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Example. Consider the following grammar, where ¢2 is the only final state:

c() = ql
b(gl) — q1
a(ql,ql) = q2

It is easy to see that this accepts the tree below left, by processing the tree from the bottom up:

a a
AN N a
b b b b PN q2
| | ql ql
c cC ql ql
Clearly this grammar also accepts:
a
b b
| a
b oc A
\ c c
b
\
C
and infinitely other trees, but does not accept:
a a
N
a b a b
AN |
c Cc ¢ c ¢

or infinitely many other trees. Now let’s consider MG derivation trees, with e or o at the internal nodes and lexical
items at the leaves.

10.0.2 MG derivations as regular tree languages

We can define a deterministic bottom-up finite state acceptor for MG derivation trees. Given any
G=(%,F, Lex,C,e,0),

consider all trees over the ranked alphabet containing e2, 0! and ¢° for ¢ € Lex.

Beginning with the lexical items, suppose we just merge things together arbitrarily, merging either two separate
things (indicated by the binary symbol e on the left below) or merging a structure with some constituent that the
structure contains (indicated by o, on the right).

/\

XYy

o

X

(Compare the suggestion in Chomsky’12 that merge simply takes any two elements z,y to form {z,y}, with
interface constraints determining whether the resulting derivations are good.) Some trees built in this way are good
derivations like the one on the left below. Others are not good, like the one on the right below.

good derivation bad derivation
[ ]
o Which:::m
| T~
. e prefer:=D =DV
e:=V m 0/\0
\ \
o/th\ey::D thex:=ND e

/\ /\
prefer:=D =DV e e:=V +wh C o

Which:::m::N win‘e::N
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It turns out that checking to see which tree forms a good derivation can be done extremely easily by a finite state
device (here, we use a deterministic finite state bottom-up tree acceptor), and the mapping to output representations
(‘derived trees’) is also finite state.

We will define a deterministic bottom-up tree acceptor that accepts exactly the complete derivation trees deter-
mined by G.

For any MG, the states ) can be represented as pairs («, 1) where « is the sequence of head features o and p
is the sequence of movers (where each mover is itself a sequence of features). The SMC says that we cannot apply
move to a +f structure in which there is more than one -f mover, and so we can simply refuse to create a set of
movers from sequences with more than one -f. And the order of the movers does not matter, so p can be regarded
as a set. And the set F of final states will be the start category of the grammar, C.

Then all instances of the following comprise the finitely many rules of the acceptor for any MG, where

w s any sequence of vocabulary elements (in the lexicon)
«a, are nonempty sequences of features
W1, e are the sets of sequences of ‘moving features’

(lex) wsal) > o for each w = v € MG
(mergel,2) e((=za,u1), (z,42)) = (o, p1 U pus) if SMC
(merge3)  o((=za), (u1,2B,p2)) = (o, {B} Up1Upz) if SMC
(movel) o((+xar, ur U{-2})) = (o, p1) if SMC
(move2) o((+xar, uy U{-28})) = (a, 1 U{5}) if SMC

Applying SMC in merge, we block combining two constituents if they both have a -f moving element. And note
that this acceptor is deterministic, because no 2 rules have the same left side.

So to check whether an MG derivation is good, our rules map each leaf, each lexical item to a state which is
named by its sequence of features. We indicate acceptor states (the features) in redfl

o o
. .
e:=V ﬁlc\o =V Jﬁ}o
o/th\ey::D - ./B
/\ /\
prefer:=D =D V e =D =DV e

/\
which:::m::N =N D-wh N

Now instead of lexical items at the leaves, we have just feature sequences, which will be the ‘states’ of our finite
state tree acceptor. The acceptor calculates the states for internal nodes by checking features of its daughters in
the standard way for MGs [34], and the tree is a good derivation if at the end, at the root, we have just the single
category feature C (or whatever category one assumes is the ‘start’ category). This is done in 5 trivial, deterministic
steps:

step 1 step 2 step 3 step 4 step 5
check =N and N check =D and D check =D and D check =V and V' move wh

o

\
[ ] @]

v feh O . o
7N v feh O . 0
=D ﬁwh =D V—/Wh =V mvh Fwh ‘C ~wh C

That these steps can be done by with a regular, deterministic bottom-up tree acceptor is pointed out in Ko-
bele&al’07,, but the essential insight about this structure was already implicit in Michaelis’98.

3This accepting derivation of the tree is taken from Appendix B of Stabler’13 [35].
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10.1 From MG derivations to derived trees

Calculating a derived tree, with the moved constituents in their proper positions, adds very little extra effort.
Kobele&al point out that it can be done by a deterministic, multi bottom-up tree transduction. Traversing the tree
bottom-up as before, now we let each state have subtrees, and each step can apply a trivial assembly step to the
subtrees of the states it is applying to. So now the first step replaces each leaf not just with a state (= the features),
but with a state that keeps the original leaf as a subtree. And then, again, we take 5 steps, checking features as
before but this time computing subtrees for each state. And again, we put the states in red:

lexical features step 1: check =N and N
with subtrees with subtrees
o o
| |
[ ] [ ]
/\ /—\
=V +wh C ° =V +wh C °
€=V ‘erh C o/\ €=V ‘erh C o/\
=D =DV e they::D =D =DV D-wh they:D

| o Ty |
prefer:=D =DV =N D -wh N prefer:=D =D V
\
which:::E\T D -wh wine:N which::mg:

step 2: check =D and D step 3: check =D and D
o] 0]
| |
[ ] [ )
/\ /\
=V +wh C . =V +wh C V,-wh
/\
€=V ‘erh C =D Vm €=V ‘erh c > <
_— \ N
< < they:D they:: < which::-wh  wine::
prefer::=D V which::-wh  wine:: prefer::V
step 4: check =V and V step 5: move wh
o C
| |
+wh C,-wh >
/\ /\
< < < <
e::+vs{c\> whichﬁe:: Whimw:: e::C/\>
PaN PN
they:: < they: <
N N
prefer:: prefer::

Step 5 is the derived bare phrase structure representation of which wine they prefer. Getting X-bar representations
instead is only slightly more difficult.

10.2 CKY-like MG parsing

This perspective shows how to convert our CKY recognizer into a parser: we need only collect the derivation trees
from the CKY chart, and then we can map those derivation trees to derived trees in whatever format we prefer. To
collect the derivation trees in CF CKY parsing, we began with the successful item, the S found between position
0 and the end of the sentence, and simply figured out how this could have been entered into the chart. But MG
parsing requires more search (because of merge3!), and so it makes more sense to record our recognizer steps, so that
we can simply trace our original steps backward. This is what we do in mgckyp.py: we record at each step what
items the result comes from. In a good implementation, these previous steps are not complete copies of previous
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steps, but pointers, and so the parsing overhead is not too heavy. Once we have the derivation tree, we have code
to transduce it into a state tree that shows the acceptor states of the tree, or a bare tree, or an x-bar tree.
We have sessions like the following. The parse command in line 2 shows the chart and then returns (True,trees)

if the chart is successful, as we see in line 49. The simple ‘user interface’ command ui used in line 50 prints a
tree, and asks whether you want to look for another one. If not, we type 'n’ to return that tree, and then we can
transduce it into various forms as we see here:

>>> from mgckyp import *
>>> parse(mg0, [’the’,’queen’, ’knows’, >which’,’beer’, ’the’,’king’, prefers’],’C’)
--- scanning (0, 0) and then (0, 1) the

(0,0)::=VC

(0, 0) :: =V +wh C

(0, 1) ::=ND

--- scanning (1, 1) and then (1, 2) queen
(1,1)::=vcC

(1, 1) ::=V+wh C

(1,2) ::N

(0, 2):D

--- scanning (2, 2) and then (2, 3) knows
(2,2)::=vVcC

(2, 2) ::=V+wyh C

(2,3) ::=C=DV

--- scanning (3, 3) and then (3, 4) which
(3,3)::=VC

(3, 3) :: =V +wh C

(3, 4) :: =ND -wh

--- scanning (4, 4) and then (4, 5) beer
(4 ,4) ::=vVC

(4 ,4) :: =V +wh C

(4 ,5) ::N

(3,5):D -wh

--- scanning (5, 5) and then (5, 6) the
(5,5)::=VC

(5, 5) :: =V +wh C

(5,6) ::=ND

--- scanning (6, 6) and then (6, 7) king
(6 ,6)::=VC

(6, 6) ::=V+wyh C

(6 ,7):: N

(5, 7):D

--- scanning (7, 7) and then (7, 8) prefers
(7,7) ::=VC

(7, 7) ::=V+wh C

(7,8) ::=D=DV

(7, 8) :=DV (3,5:-wh

(5, 8) :V (3,5):-wh

(5, 8) :C(3,5:-wh

(5, 8) :+wh C (3,5):-wh
(3,8):¢C

(2,8):=DV

(0, 8) :V

(0o,8):¢C

--- scanning (8, 8)

(8,8)::=vVC

(8, 8) :: =V +wh C

(True, [[°*>, (01, [CL, °v?), (-1, °C’)1), [’x’, [’x’, ([’knows’], [(1, °C’), (1, °D?), (-1, °v’)1), [’o’, [’x*, ([1,
>>> pptree(0,dt2t (ui(mg0, [’the’, ’queen’, ’knows’, ’which’, ’beer’, ’the’, ’king’, ’prefers’],’C’)))

i:;’.", aa, rca, °ve), -1, °¢cnH1y, =, [’x’, ([’knows’], [(1, °C’), (1, °D?), (-1, °v’)1), [’o’, [’x’, ([1, [(1, °V°
anotherf?| n
*

::=V C
knows::=C =D V

::=V +wh C

*
prefers::=D =D V
*
which::=N D -wh
beer::N
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the::=N D
king::N

the::=N D
queen: :N

>>> pptree(0,dt2xb(ui(mg0, [’the’, ’queen’, knows’,’which’, ’beer’,’the’, ’king’, ’prefers’],’C’)))

[0, (O, [Q, V), 1, )], D, [, (Dkoows’], [(1, °C7), (1, *D?), (-1, V)1, [o?, [+, (0,

another[?] n

CP
C
(]
VP
DP
D
the
NP
queen
v)
')
knows
CP
DP(0)
D
which
NP
beer
C)
C
[
VP
DP
D
the
NP
king
v)
')
prefers
(°DP(0)7,)

>>>

With the NLTK tree display, we can look at these trees in the more readable graphical formats displayed in these
notes.

10.3 Ambiguity and more complex examples

Now that we have a parser which can display our trees, let’s look at ambiguity, and then at a couple of other
linguistic proposals which involve (mainly) phrasal movement.

10.3.1 Ambiguous strings from unambiguous lexical sequences

We have already seen that MGs can be regarded as a (exponentially more succinct) notation for MCFGs, where
an MCFG differs from a CFG only in the way the strings are manipulated. So if we don’t manipulate the strings,
every MCFG is just a CFG. That is, the yields of the derivation trees of MGs are context free languages. We are
now in a position to notice something else about them.

Unless we have ‘precedence rules’ of some kind to determine the prefered reading, the logical formula —p A q is
ambiguous. And obviously the ambiguity can matter — one reading entails —p, but the other one doesn’t!

One way to eliminate the ambiguity is with parentheses,

(—p)Ag vs. =(pAq).

Another way is to use Polish notation,
A=pg vs. = Apq.

[a,

7V7
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The parenthesis notation is more commonly used, but the Polish notation is formally more elegantE
Now consider the minimalist grammar mgpc:

p:S q:S r:=S
=58 Vi=5=5§ AN:i:=85=8§

This grammar has ambiguous expressions, since we have the following two different two derivations of —p A ¢:

pAq:S
| whes "ETES pAeiS
Ag:=5 S -p: S ANg:=SS p:=S
ANu=S=8S ¢85 —-=:2=8585 p:=:S§S A =5=58 q:: S

These correspond to trees that we might depict with X-bar structure in the following way:

S‘P
SP S’

/\ /\

sp S S sp
N N
S S sp - Ssp S

AN ] LN

[ S A

T P
P P
p q

While these examples show that mgpc has ambiguous expressions, compare the defivation trees. Notice that the
yields of the two simple derivation trees shown above (not the X-bar structures, but the derivation trees) are not
the same. The two yields are, respectively,

AN:=5=88 q=:8S =88 p:S
—2=85 ANu=5=58S8 ¢S p:S

In fact, not only this grammar, but every minimalist grammar is unambiguous in this sense [I6]. Each sequence
of lexical items has at most one derivation. These sequences are, in effect, Polish notation for the sentence, one
that completely determines the whole derivation. Notice that if we leave out the features from the lexical sequences
above, we have exactly the standard Polish notation:

ANG—p
“Agp

The lexical sequences that are the yields of any MG derivation trees form an unambiguous context free language.

10.3.2 Promotion analyses of relative clauses
In Ling 1, relative clauses are often described as questions used as modifiers. For example, in
The farmer [who chased the cat] saw the dog The cat [of which I have spoken often]| chased the rat

it seems the answers to who chased the cat are supposed to help us understand which farmer you might be referring
to But that perspective is not really right, as we notice immediately from the fact that perfect questions like these
cannot be relative clauses (even ignoring the subject-auxiliary inversion, which seems to happen only in matrix
clauses):

4Why isn’t the formally elegant notation more common? It is harder to read! (why?) Shoenfield’s logic text actually adopts the
prefix notation for the language officially, but presents things in the infix, parenthesized notation for us to read. Cf. Hawkins’ idea that
we like to keep arguments near their operators.
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which farmer chased the cat?  but not *the man which farmer chased the cat
of which cat have you spoken? but not *the cat of which cat you have spoken

It seems that a more natural perspective is one in which the head noun must be “raised” or “promoted” out of the
question in order to become a relative clause:

farmer [which ___ chased the cat]?
cat [of which _ you have spoken]|?

Let’s see how this might work.
Kayne [20, §8] proposes something rough like this. Promotion analyses were independently proposed much earlier
because of an apparent similarity between relative clauses and certain kinds of focus constructions [32, [36] 11 3]

a. This is the cat that chased the rat
b. It’s the cat that chased the rat

e a. * That’s the rat that this is the cat that chased
b. * It’s that rat that this is the cat that chased
e a. Sun gaya wa yaron (Hausa)

PERF.3PL tell 10BJ child
‘they told the child’

b. yaron da suka gaya wa
child REL 3pL tell 10BJ

‘the child that they told’

c. yaron ne suka gaya wa
child Focus 3pPL tell 10BJ

‘it’s the child that they told’

e a. nag-dala ang babayi sang bata (Ilonggo)
AGT-bring TOPIC woman OBJ child

‘the woman brought a child’

b. babanyi nga nag-dala sang bata
woman REL AGT-bring OBJ child

‘a woman that brought a child’

c. ang babanyi nga nag-dala sang bata
TOPIC woman REL AGT-bring OBJ child

‘it’s the woman that brought a child’

The suggestion is that in all of these constructions, the focused noun raises to a prominent position in the clause.
In the relative clauses, the clause with the raised noun is the sister of the determiner; in the clefts, the clause is the
sister of the copula. We could assume that these focused elements land in separate focus projections, but for the
moment let’s assume that they get pulled up to the CP.

Kayne assumes that the relative pronoun also originates in the same projection as the promoted head, so we get
analyses with the structure:

1. The hammer; [which ¢;]; [¢t;broke t]x [the window]y, ¢y
2. The window; [which ¢;]; [the hammer], [t)broke ¢;] tk

We can obtain this kind of analysis by allowing noun heads of relative clauses to be focused, entering the
derivation with some kind of focus feature -f.

5Some recent studies suggest that relative clauses in English and some other languages may have both promotion structures as well
as others [4} 19 [1I7].
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€::=t ¢ €::=t +whyel Crel

€::=pred +case t

the::=n d -case the which::=n +f d -case -wh,
the::=c, d -case

hammer: :n hammer::n -f

window: :n window::n -f

€::=V +case case

€::=tr =d pred

€::=case +tr tr

broke::=d v -tr

NB: focused lexical items in the second column.

This allows us to derive (showing bare tree on left, x-bar tree on right):

cP
AN
< c tP
/\ /\
€:C > dP: t’
< < d nP t predP
T N | |
the hammer > the hammer dP pred’
/\ AN
< t1 pred vf
fell fell
cP
AN
< c tP
/\ /\
€:c > dPs t’
/\
< < d nP t predP
T RN | | N
the hammer > the hammer dP pred’
/\
< ts  pred trP
/\
> vPo2 tr’
////ﬁ\\\\ ///\\\ //A\\
< < v dp tr
N | |
broke > broke t1 dP:
/\
< < d
T N |

the window the window

125



126 CHAPTER 10. DERIVATIONS, DERIVED TREES, AND TREE TRANSDUCTIONS

hammer < > fell

. h/\ /N
PN

A

A\

A

Crel’ dp pred’
T N VAN

nPs dP Crel tP ts

| N PN

hammer d nP dP4 t’ fell

| | N

which  t3 t4 t predP

PN

dp pred’

N

t4 pred trP

vPs> tr’

PN

v dp tr  caseP

caseP

d nP case vP

the window to

Buell [7] shows that Kayne’s analysis of relative clauses does not extend easily to Swahili. In Swahili, it is
common to separate the NP head of the relative clause from the relative pronoun -cho:

e Hiki ni kitabu ni- li-  cho- ki- soma
7.this cop 7.book 1s.subj- past- 7.o.relpro 7.obj- read
“This is the book that I read’
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e Hiki ni kitabu ni- ki- soma -cho
7.this cop 7.book 1s.subj- 7.0bj- read -7.o.relpro read

‘This is the book that I read’

Other critiques of Kayne are presented in [6] and some of them are answered in [3] and elsewhere. . .

10.3.3 Smuggling

John; seems to Mary [t; to be nice]
[IPJOhIl [I/I [Vp [Vp (John) [V/seem <IP> ” [V/V [ApplpMary [Appl/Appl [XPIP [X/X <VP>]

John gets to matrix subject from VP, after that VP has moved to spec,vP

Chris Collins provides a step-by-step analysis of raising constructions [I1I]. (Note that he adopts a convention of
leaving off closing right brackets when no confusion can result.) I will not discuss the motivation for this analysis
— see Collins’ paper — but he has his eye on the c-command worries raised by examples like the following:

e *John seems to her; to like Mary;

e The dog seems to [every boy|; to like all of his; toys

These issues have been discussed by many people [8] 2] 21} [5]. For the moment, I am interested in the mechanics
of the particular derivation Collins proposes.

P
DP I

| vP
John /\
VP Vv
/\ /\
DP A v ApplP
/\ /\
\% <IP> Exp Appl
raising App! / <P
IP/\X'
/\
X VP
/\
DP \A
/\
\ <IP>

smuggling (remnant movement)

(In transcribing this tree from [IT], p.295], I corrected what I take to be an error in the published version: I put an
X as the left child of X’ where the published version has XP.)

Merge(John, nice) = [aqjpJohn nice]

Merge(be, AdjP) = [vp be [agjpJohn nice]

Merge(to, VP) = [ip to [vp be [agjpJohn nice]

Move(IP[John]) = [rpJohn [ to [vp be [agjp(John) nice]

Merge(seem,IP) = [vpseem [rpJohn [i to [vp be [agjp(John) nice]
Move(John,VP) = [vpJohn [vpseem [rp(John) [ to [vp be [aqjp(John) nice]
Merge(X,VP) = [xpX [vpJohn [vpseem [rp(John) [ to [vp be [aqjp(John) nice]

NS ot e W N
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8. Move(XP|[IP]) = [xp [1p(John) to be nice| [vpJohn [vpseem (IP)]
9. Merge(Appl,XP) = [appipApp! [xp [rp(John) to be nice] [vpJohn [vpseem (IP)]

10. Merge(Mary,ApplP) =
[appipMary [apprr Appl [xp [1p(John) to be nice] [vpJohn [vpseem (IP)]

** whoops, this last step is trouble! **
You should now be able to assign features to lexical items in such a way as to make these steps happen.

Collins is especially interested in the movement of the VP, followed by the extraction of John from that VP. He
calls this ‘smuggling’. We can allow that part of the smuggling to happen. . . But we cannot allow this last step, step 10,
because neither Mary nor John has had its case checked in the last structure shown in this slide, and our grammars
will not allow a derivation to complete once there are 2 -k phrases in it. — This is analogous to the problem Chomsky
wrestles with in [9 Chapter 4], where (even with head movement etc, which we have not introduced yet) he wants
to extraction of a DP from a VP that has both a subject and object DP in it. The system we have introduced here
will not allow this, unless the DPs move for different reasons.

A different idea has been suggested by Dave Schueler (p.c.), who writes:

It seems that while [MGs] don't allow, assuming the SMC, anything capturing the true spirit of Collins’s
smuggling idea, they do allow a certain type of "featural smuggling", since the SMC only disallows the first
features of any two items being the same. That is, at a certain point in the derivation, you could have
a::D -k and b::D -x -k, with b lower (merged earlier) than a. Then, a head could check -k on a, then
another head could check -x on b, and still another could later check -k on b, with b thus moving “over” a.

One way in which this doesn't capture the spirit of Collins's idea is that it doesn't require a literal smuggling
movement; no larger structure containing b has to move over a before b moves out of that structure. Instead,
b can stay low until the +x head is merged, then move there, then up to check -k. However, the movement
to check +x could be considered the smuggling step in a way.

In the case of passive, and perhaps all linguistically relevant uses, it violates the spirit of Collins another way;
it requires a lexical difference between D’s which will be passive subjects and those that don’t. However,
this might be part of the large general property of MGs that they require more features than people doing
informal work notice.

Can you implement this idea? (Possible squib topic!)
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Chapter 11 MG GLC beam recognition

A number of different ‘all paths at once’ strategies are defined in [I], but there has been relatively little work on
‘one path at a time’ strategies. Some first steps were taken in [7], 2 [8 @], but the topic deserves more attention,
since psychologists often propose models of this kind, and it is likely to reveal interesting new perspectives on the
grammar. With memoization, the various ‘one path at a time’ strategies can be efficient, but some of them may be
usable with appropriate probabilistic beam strategies, even without memoization [4].

11.1 Top-down MG beam recognition

A top-down MG beam recognizer is easy to define and implement. What we want to do is parse the derivation
tree (not the derived tree!), but we want to parse that tree in the order of left to right in the derived tree. So for
example, in the derived tree for which wine the queen prefers, the first word which is at the bottom of the tree, and
is not shown in leftmost position, but of course it is leftmost. So the “left branch” of the tree is really the branch
to the leftmost word, shown in red here:

o

°
€=V -iﬁC\o
° °
prefers::=D/=D\Wo the::=N/D\queen::N
which::=N mne::N

Left-mostness is determined by the derivation steps, of course, and so we can mark the linear order of each node
with an index, as it is created top—downE We index each node as we create it, and put these predicted elements
into a priority queue that sorts by least index, that is by left-mostness, rather than keeping the predictions in a
stack as done in CF recognizers. Recall from page [45] that we are already using a priority queue to keep the parses
sorted from most probable to least. Now each parse uses (not a stack but) a priority queue to keep the predicted
elements sorted from leftmost to rightmost.

With this idea, to recognize the 12-node derivation tree above, we begin as usual by predicting C. We use
the single dot to indicate that the predicted C can be either lexical (::) or derived (:), and we put the predicted
categories in [square brackets|:

which wine the queen prefers, p-C|. (0) start

The first step expands that prediction with a move step, to get the following:
which wine the queen prefers, [:+wh C;,-why]. (1) expand: unmove

This indicates that the +wh C head with index 1 will follow the moving -wh phrase which has index 0. (Note that
we use parentheses here for grouping the predicted constituents, not to indicate completed elements.) The second
step expands that prediction with a merge-complement:

which wine the queen prefers, [:Vi1,-who] [::=V +wh Cj] (2) expand: unmerge

Note that the mover has not been passed to the complement V. The head ::=V +wh Cjy will precede the head of
the complement :Vy;,-whg, as indicated by the indices 10 and 11 indicate, but the constituent containing the -wh

1This idea was suggested most directly in work by Mainguy [3], but indices have been used in similar ways in earlier work too [8].

131



132 CHAPTER 11. MG GLC BEAM RECOGNITION

mover is still placed first because it has the 0 index — it will precede all of the other elements. Expanding the
leftmost constituent again with a merge-specifier step we get:

which wine the queen prefers, :=D Vy11,-who| [:=V +wh Cig] [:D110] (3) expand: unmerge

Note that the mover has not been passed to the specifier D, but stays with the head. Again we expand the leftmost
element to merge the -wh object, removing it from the verbal projection, and so the sorted order is now:

which wine the queen prefers, [:D -whg] [::=V +wh Cyo] [:D110] [::=D =D V14| (4) expand: unmerge
Again expanding the leftmost element we get:
which wine the queen prefers, [::=N D -whgg] [::No1] [::=V +wh Cip] [:D110] [::=D =D V111]
(5) expand: unmerge
This leftmost element is the category of the first word so we scan to get:

wine the queen prefers, [::No1] [::=V +wh Cyg] [:D110] [::=D =D V111] (6) scan

At this point we have completed the left branch that we marked in red, with the other branches attaching to the
red branch waiting now as predictions. So now, scanning again,

the queen prefers, [:=V +wh Cig| [:D110] [:=D =D Vi11] (7) scan
We have reached the empty complementizer, which is scanned without changing the input:
the queen prefers, [:D119] [::=D =D V11| (8) scan

At this point, we expand with a merge step

the queen prefers, [::=N D190 [::N1101] [:=D =D Vi14] (9) unmerge

Scanning;:
queen prefers, [::Ny101] [:=D =D Vi11] (10) scan

Scanning:
prefers, [::=D =D Vi11] (11) scan

And finally, the last scan to success:
€,€ (12) scan

It is quite easy to implement this calculation. It is natural to use the graphical representation of the lexicon that
is described in §9.5] and the search can be a beam. This recognition algorithm is presented in detail in Appendix
B of Stabler’13, and is implemented in mgtdb.py. It is extended to a parser in mgtdbp.pyE

11.2 Bottom-up MG beam recognition

A bottom-up left-to-right MG recognizer should perform each merge step immediately after the merging elements
have been built, and move steps should be performed immediately after the move-triggering element has been built.
Considering the same derivation again, repeated here with the first bottom-up steps numbered in red.

(e]

\
[ )
€=V +ﬁC\o
/\

[ [
T~ T~
prefers::=D =D V o the::=N D queen::N

which::=N D -wh wine:: N

2Implementations of this parser in various languages are available at https://github.com /epstabler/mgtdb /wiki.
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These are exactly the first steps of the correct parse in the order that they are taken by the CKY parser. To handle
non-adjacent parts of constituents, let’s use positions for the moment, as done in CKY. So then, stepping through
the correct recognition of the derivation, the steps are the following. I will put the predicted elements in [square
brackets] and the completed elements in (parentheses).

[Co,s]
=N D -who,1) [Co,s]

which wine the queen prefers,
wine the queen prefers,

start
shift-reduce

the queen prefers, :N1,2) (::=N D -who,1) [-Co,5] shift-reduce
the queen prefers, -who,2) [-Co,s] reduce
the queen prefers, :=V 4wh Cz2) (:D -wh)o2 [-Co,s] reduce
queen prefers, :=N Dg3) (:=V +wh Cs2) (:D -whoz2) [-Cos] shift-reduce
:N3 4) ( =N D273) (:::V +wh Cz,z) (:D —Whoyz) [~C()75]
prefers, D24) (:=V +wh Ca22) (:D -who,2) [-Co,s] reduce

shift-reduce
reduce

) reduce

) reduce

) reduce-complete

€, =D =D V4 5) (:D2,4) (IZ:V +wh Czyz) (ID
=D Vu5,-who,2) (:D2,4) (::=V +wh Caz2) [-Co,s]
Vo d,—Whoyz) (:::V +wh Cz,z) [~Coys]

+wh Ca5,-who,2) [Co,s]

-who,2) [-Co,s]
67
67
67
67

(0)
(x (1)
(: (2)
(:D 3)
(: (4)
(: (5)

prefers, (: (6) shift-reduce

(: (7)
(: (8)
(: (9)
(. (10
( (11
€ (12

These steps are taken by our incremental CKY recognizer. They could also be taken by a beam parser, but I have
not implemented this.

11.3 Left-corner MG beam recognition

A left-corner recognizer is bottom-up on left corners and top-down on their sisters (if any). ‘Left’ in the term ‘left
corner’ refers to pronounced order.

which wine the queen prefers, [-Cos] (0) start
wine the queen prefers, (::=N D -whg 1) [-Cos] (1) shift
wine the queen prefers, [Ni;] (:D -who;) [-Co,s] (2) le-reduce
the queen prefers, (:D -whg2) [-Cos] (3) scan
the queen prefers, [:=D =D V; ;| (:=D V;;, -who,2) [-Co,s] (4) le-reduce
the queen prefers, (:=V 4+wh Cz32) [::=D =D V,; ;] (:=D V,;, -who,2) [-Co,5] (5) le-reduce €
the queen prefers, [:Var,-wheo]| (:4+wh Co ,-why o) [::=D =D V; ;] (:=D V, ;, -who,2) [-Co,5] (6) le-reduce
queen prefers, (::=N Dg3) [:Vak,-whe o] (:4+wh Car,-why o) [:=D =D V; ;] (:=D V;j, -who2) [-Co,s] (7) shift
queen prefers, [::Nsm| (:D2,m) [:Va,k,-wheo| (:-+wh Ca i ,-whe o) [:=D =D V; ;| (:=D V,;, -who2) [Co,5] (8) le-reduce
prefers, (ID2,4) [:Vz’k;WhZ’Q] (:+Wh Cz,k;Whe,z) [:I:D =D Vi,j] (IZD Vi,j7 -Who,z) ['Co,5] (9) scan
prefers, [:=D =D V4 ;| (:+wh Cs ;,-who2) [-Co 5] (10) lc-reduce-complete
prefers, (:+wh Ca5,-who,2) [-Co,5] (11) scan
€, ¢ (12) lc-reduce-complete

As far as I know, this has never been carefully defined or implemented.

11.4 GLC MG beam recognition

The full range of GLC methods has not been investigated.
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Chapter 12 MG elaborated

Let’s extend MGs to implement a grammar similar to the one developed in the Koopmand&sal’13 text (ISAT), which
is used here at UCLA.

12.1 Persistent features

12.1.1 EPP and Attract closest

In some linguistic proposals, the trigger for movement to subject position in simple English sentences is called the
“extended projection principle.” In [I4] §8.5], for example, this requirement is encoded by giving the T (tense) head
a feature epppp/cp which triggers the movement of a DP. (When T is finite, the DP must be nominative, but we
leave aside case marking for the moment.) Some of the examples we see in the ISAT text are these:

/TP\

DPy T

TP _S/_‘“\-. /\
usanl

/\ B VP

DP T /\

DP %
‘&-
several people
_—
/\ hopes C/\TP

several people sick

to DP v
. |
PRO sleep
ISAT: p243 ISAT: p269
vP
DP v’
T T
Jessica
v PP
l /\
made
DP PP
—_—

P TP
| /\
out
DP iy
_

him " be him a liar

ISAT: p403
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is;
P
\|J AP
& m
| i
ti A CP
I LN
tough OP; C’
P
| T TR
for DP T
| S
me; T VP
A
to VP PP
L. AN
DPV' P DP

I
i ‘lv* with ¢

work

ISAT: p454

The problem with implementing these analyses in MGs is that the subject’s categorial features are deleted when
they are selected by the VP. But this requires only a simple extension of MGs. Let’s assume that, whenever D (or
C) is selected, in addition to deleting the D (C), another item is produced with the feature -D (—C) We implement
this idea by adding this instance of merge, which is exactly like the previous one except that instead of deleting the
categorial feature f, it makes -f available for licensing:

131 t2[-f] if ¢, has exactly 1 node
mergego(t1[=t], ta[£]) = ! Y

t2[-f]  t1 otherwise

But then, how do we make sure, in a transitive clause, that it is the subject rather than the object that raises to
spec,TP? One idea is that the object cannot move to Spec, TP because the subject is closer [14, p.332]:

Attract Closest: Only the closest potential candidate can move to an attracting head (which selects for it)

We implement this restriction by blocking merge rules that apply to t[=f] and t’[f] when eight tree has a -f mover.
We add this SMC-like restriction to all merge steps: a a selector =X and selectee X cannot merge if either has a
-X mover. With this approach, an EPP feature is simply a +f where f is categorial, and we can simply represent
the lexical entry for past tense this way:

-ed:=V+4+D T
-ed::=V +C T

12.1.2 Successive movements

The text also allows -wh features to persist in successive wh-movements like these:

IWe can assume that every categorial feature X can, in principle, be attracted by eppx, but obviously we only need to record those
values —X for which eppx features exist in the grammar.
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CP
I
whla,tp ¢
DP T
S'Lllek T VP
t!.. DP '
tL vV CP

|
wonder AdvP O’

|
where(”

Bill,, T VP
| /\\
[+past] VP  AdvP

DP V'
[

tp

ISAT: p317

If the first movement deleted the -wh, the second one would not be possible, so we add to our rules the possibility
of optionally leaving the -wh undeleted in a movement step.

A similar thing can happen with raising, as we see in examples like this:
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Tl
VP
DF
— elapse slowly in the tropics
time

ISAT: p245

This can be allowed with the adjustment mentioned in the previous section: we optionally do not delete the -f

feature in each movement.
For these kinds of ‘feature persistence’, we add an instance of move that does not delete the licensee feature:

>

/\ if (SMC) only one head has -f

movegc(t1[+£]) = to[-£]7 ta{ta[-£]7 /€} as its first feature

This rules is added to the original rules, so, in effect, the added -f features are optional. These elaborations of MGs
are rather minor.

12.2 Head movement and affix hopping

The movement allowed in MGs is phrasal: that is, whenever a head is moved, the phrases it selects move too (unless
they have already moved away). But in the 1980’s, many linguists assumed that movement could move just a head.
And in most of these proposals, the assumed head movement is ‘local’ in the sense that a head moves up to the head
selecting its phrase (or else, in affix hopping, the selecting head moves down to the head of the selected phrase):

Y’ = Y’
/\
Y XP Y XP
|\ N
wl X’ X, Y X
/\ |
T( w2 wl X;
w2

There are many examples in the literature. The movements involved in ‘subject-auxiliary inversion’ (V to v, v to
T, T to C), and ‘preposition incorporation’ (P to V) are just a few of them:

V-to-v v-to-T T-to-C P-to-V P-to-V
v’ T C’ A& Vv’
v VP T vP C TP Vv PP \% PP
A NVAN P VAN NN\ A NVAN P VAN
Vi v Vv’ Vi T v’ T, C 1T vV P; P’ P; \4 P’
\ V4 VAN A N AN \ A N \ /\
have Vi Vv -ed v; v T T; call up P; op gebeld P;
VAN
have \‘/ v -ed
have

Many alternatives have been considered, but head movement remains popular. Roberts’10 says
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... the variety of head movement | will argue for is indistinguishable from XP-movement in all respects except
the irreducible one that this is the case where Move applies to a possibly non-maximal, certainly minimal,

element.

The problem is that many things go along with the simple ‘irreducible’lqd The simple fact is that head movement
moves a head without any of its arguments or adjuncts. More complicated is the fact that a moved head does not
become a specifier, but the selecting head incorporates the selected head to become complex. And if we allow affix
hopping, as ISAT does, then the selected head can incorporate the selecting head too! Here let’s consider how we

could adapt MGs, in the most straightforward way possible, to allow this[

12.3

<
mergeHM(t; [=>f], ,[f]) = hda2ta ta(hdz > €) if ¢; has exactly 1 node
<

/N

mergeAH(#; [<=1], {5[f]) = t1(hdy > €)  t2(hdy > hdshdy) if ¢; has exactly 1 node
Adjunction
TP
/\\
DP; i
| " o
I I VP
l ik
[+past) DP V’
t; ‘lv' \TP
bought DP
D NP
| /\
the NP,, CP
book DP; ¢’
2
D NPm ©€ 1P
| /\

ISAT: p451

2For critical assessments of Roberts’ proposal see [17} 22].
3Here we basically follow [33]. Various other ideas are reviewed in Stabler’03.
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(108) Structure for the Repetitive Reading
vP

AdvP

vP
_—
again
DP v’
—_—
Sally
v VP

P N

Vv v DP

| \
€ CAUS or elese

—

(109) Structure for the Restitutive Reading
vP

ISAT: p398

<
t1 t2[g] if ¢, if f €left-adjoiners
adjoin(t: [£], ta[g]) = LIt S joiners(g)

talg] 1 ift, if f eright-adjoiners(q)

A similar idea is proposed by Frey and Gértner ﬂ@

12.4 Subjacency

Ross’67 made famous the idea that movement could be stated as a general and simple rule if it is constrained to
avoid unwanted applications like thesed]

XXX

We have imposed the ‘shortest move constraint’ (SMC). Salvati’11 shows that without that constraint, MGs can
define much more complex, intractable languages.

ISAT (§10.5.3) adds this restriction on movement:

4The ‘Maryland’ tradition in syntax suggests that adjunction should be simpler than merge (see, for example, [2} §3.4]), an idea
which has been formalized in a rather elegant way by Hunter [13].

5Whether these restrictions should be part of the grammar is controversial. The idea that constraints on movement are extra-
grammatical has been of interest especially in alternatives to Chomskian syntax that want to dispense with constraints or with both
constraints and movement. For example, in recent discussions of combinatory categorial grammar, Steedman, in [37, p.49] and [36], for
example, suggests that island effects may be extragrammatical, due to performance factors. The categorial approach need not take that
view, though. Moortgat, Morrill and others have explored enriching the types of categorial grammars to encode island environments
[21, [19]. Vermaat, Retoré, Lecomte, and others have shown that type-logical grammars can mimic Chomskian analyses [39} [40] [15].
Morrill and colleagues provides an elegant categorial approach to discontinuity in which such constraints could be imposed [20]. Recently,
Szabolcsi and others have argued that (at least some) constraints on movement are really semantic ||, and Sag and others have argued
that (at least some) constraints can be regarded as (gradient) memory restrictions |28 [31], [II], while
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(Subjacency) Movement cannot cross two bounding nodes, where the bounding nodes are TPs and CPs that are
not complements of V.

As discussed for example by Sportiche’81, the bounding nodes in different languages could vary.

12.5 CKY parsing: the tuple-based representation

The CKY-like methods extend easily to MGs with head-movement, adjunction, and persistent features with the
operations we have defined, but now we have many more cases to cover. And we impose this extended version of
the SMC:

(SMCx1) Merge cannot apply to a =f selector and f category if either constituent has a -f mover, or if both
constituents have a -g mover for any g.

(SMCx2) Move cannot apply to a + f constituent unless it has exactly one -f subtree.
Furthermore:

(Subjacency) Nothing can move across two bounding nodes, where a bounding node is a TP or CP that is not
a complement of V. This is enforced by associating each mover with an integer k& € {0, 1,2}, beginning with
k =0 and then:

e T or C cannot merge with X if any mover of X already has a mover with integer 2. Otherwise, when T or
C merges with X every mover of X is incremented.

e When V merges with T or C, each mover is decremented.

(Adjunct Island Constraint) Nothing can move out of an adjunct. Le., the adjunct rules do not apply if the
adjunct has any movers.

(67576)::=f7 (tsvthv ) f?ala"'a (675 . .
mergel: lexical item selects a non-mover as complement
(67 SvtsthtC) Y0, .., O
€,8,€) 1= ts, 1 aq, ...
(e,5,€) = =f7 (s thote) - from, oo mergel,,,: lex item selects EPP mover
(65556):Vatsthtc:_fvala"'a Qg

(686) _>fFY (tsvthv ) f?ala"'a

mergely,,: lex item selects head-moving non-mover

(67 thS, tstC) Y, 1, ..., Ok
€,8,€) 11 => ts,t ...
(€5, €) it} (bs thote) - fran, o o mergel,, s.: lex item selects head-moving SC mover
(e,ths,€) 1 v, tste i -f a1, ..., ax
€,8,€) 1 f=> ts,Th,t , O, Q .
( )i f=>y (Fs, th,te) - fr o k mergely,: lex item selects and hops to non-mover
(6,6, tstpste) 1y, a1, ..., Qg
€,5,€) 1 [=> ts, at,. ..
(e5,€) :: f=>y (bstnte) - fran,. o 0 mergely,,, s.: lexical item selects and hops to SC mover
(67676):VutsthStc:'f7a17"'u (077

(Ss,Sh,Sc):=f”Y,Oél,...,Oék (tsvthv ) f?Lla"'a
(tsthtcssusquC) YOy ey Oy LTy ey U

merge2: derived item selects a non-mover as specifier

(887Sh780):=f’77a17"'704k (tsatha ) f?Llu"'u

merge2,.: derived item selects SC mover as specifier

(SsushasC) : Vutsthtc : 'faalu' sy Oy L1y vl
(887Sh780)'=f’77a17"'7ak (tsutha ) f(SLla"'al .
merge3d: any item selects a mover
(SsushasC) : Vutsthtc : (S,Oél, sy Qg L1y a5
(8878}1780)':][77(117"'7(1/@ (tsuthu ) féblu"'al

merge3;.: any item selects SC multiple mover

(SsushasC) : Vutsthtc : ﬁféaalu'"704/€7L17"'7Ll
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(SsashasC) : +f/77a17" '7ai—17t : _fuai-‘rla" e .
movel: final move of licensee
(£S5, 8y 8c) 1Yy QLy v vy 1, Qig1, .o -, O
(SS,Sh,SC) : +fﬂ)/50515' "7ai71;t : _faai+17" e
movel,.: nonfinal move of SC mover
(SsushasC) P S PR e PRR P 2 _f7ai+17 s O
(Ssashusc) : +f’770417' .o ,Oéi_l,t : _f(suai-i-lu' eys .
move2: nonfinal move of licensee
(Ssushusc) o PN s PN e TR I 2 67 i1y,
(SSvshaSC) : +fﬂ)/50515' .- ;o‘iflvt : _f5aai+la' -y Ok

( ) " 75 move2,.: nonfinal move of SC multiple licensee
Ss3yShySc) * YV, 1y o 01,0 0 — sy Oip1y ooy O
(887Sh780)'f (t57th7t0)'g/77a17"'7ak

adjoinL: if f €left-adjoiners(g)
(8s8nScls,thyte) 1 gy, Q1,0 . . Qp

(887Sh780)'f (t87th7t0)'977a17"'7ak

adjoinR: if f eright-adjoiners(g)
(tsa tha tCSSShSC) g, 01, ..., O

(Ss,8n,8c) - fO (tsyth,te) - gy, 1, .., Qg
(tsyth,te) 1 g7, SsShSc t 0,1, ...,
There are so many similarities among these rules, one suspects that a much simpler grammar would work as well
or better.

Since each constituent is now indexed by 3 strings (6 integer positions), the python CKY implementation uses
not a matrix but a dictionary that maps 6-tuples of integers to the list of feature sequences at that position, together
with their movers. Note that, for a 39 word sentence we build a 40? matrix, and looping through the upper half of
a 402 = 1600 cell matrix is not too bad. But the upper half of a 405 = 4,096, 000,000 matrix takes significantly
longer to examine! Fortunately, those matrices are usually very sparse, and so instead of looping through all the
(mainly empty) cells in a huge matrix, we loop through the actual items listed in the dictionary/l Otherwise, the
implementation is essentially similar to the one described in §I0.2] on page

adjoin3: if f eright-adjoiners(g)Uleft-adjoiners(g)

12.6 A simple English

We have enough machinery in place to handle quite a broad range of syntactic structures in a conventional, Chom-
skian fashion. It is worth a brief digression to see how some of the basics might get treated in this framework, and
this will provide some valuable practice for later.

According to a simple, traditional analysis, transitive verb phrases are formed from two projections, vP and
VP, where the lower VP selects the object. To achieve this in MGs, we let transitive verbs have lexical items
requiring object selection and case assignment, like this:

praise::=D V e:=>V =D v
Here we see that the V selects a DP and then moves it to assign (accusative) case, forming a VP. This VP is then

selected by v and the head V is left adjoined to the head v by head movement, and then the subject (the “external
argument”) of the verb is selected.

cp
&
/\
(‘: TP
(e,e,the king praise -s Lavinia):C DP‘(l) T
/\
e:=T C  (the king,e,praise -s Lavinia):T D’ T vP
/\
(e,e,praise -s Lavinia):+l<‘ T,the king:-k ]‘D/}.‘lmP c‘ D‘P v’
/\
-siiv=> 4+k T  (e,praise,Lavinia):v,the king:-k the Num’ (1) v VP
(e,praise,Lavinia): =D v (e,the,king):D -k NQ\NP V/\T me*
/\ /\
e:=>V =D v (Lavinia,pra‘isc,é):v the::=Num D -k (e,e,king):Num | 1\11 \‘//\\‘, i r:)’ TI/\D‘P
(e,praise,e):+k V,Lavinia:-k e::=N Num  king::N N praise D t t(0)
praise::=D 4k V  Lavinia::D -k ki‘ng Lavi‘nia

SNote that looping through almost all cells is only necessary for merge3 and for the new cases of mergey,, and mergep,op. For the
non-head-moving instances of mergel and merge2, we know where to look, and we loop through those possibilities.
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In contrast, an intransitive verb has a simpler lexical entry like this:
laugh::V

This verb selects no object and assigns no case, but it combines with v to get its subject in the usual way.

CP
]
/\
C TP
/\
| DP(0) e
(e,e,the king laugh -s):C D“ T/\VP
e:=T C  (the king,e,laugh -s):T mmp l DP/\v*
(e,e,]augh -s):+k T,‘the king:-k tl‘w Nu‘lm’ t((‘)) \//\\/P
-suiv=> +k T (e,laugh,e):v,the king:-k Num NP V/\T \‘/’
(e,Jaugh,e):=D v (e,the,king):D -k | I\‘I V/\v l l/
€:=>V =D v laugh::V  the:=Num D -k (e,¢,king):Num 1‘\1 lau‘gh | l
/\
e::=N Num king::N kiLg

Of course, some verbs like eat can occur in both transitive and intransitive forms, so verbs like this have two lexical
entries:

eat::V eat::=D +k V.
Considering what each V and its associated v selects, we can see that they are the semantic arguments. So the

familiar semantic relations are being mirrored by selection steps in the derivation:

agent

N

intransitive  Titus laugh -s

agent theme

r~

transitive Titus praise -s Lavinii

Throughout this section, we will aim to have derivations that mirror semantic relations in this way.

12.6.1 CP-selecting verbs and nouns

It is easy to add verbs that select categories other than DP. For example, some verbs select full clauses as their
complements. It is commonly observed that matrix clauses have an empty complementizer while embedded clauses
can begin with that, and verbs vary in the kinds of clauses they allow:

(0) * That Titus laughs

(1) Titus thinks that Lavinia laughs

(2) * Titus thinks which king Lavinia praises
(3) * Titus wonders that Lavinia laughs

(4) Titus wonders which king Lavinia praises

Verbs like know select both kinds of complements and can also occur in transitive and intransitive constructions.
We can get these distinctions with lexical entries like this:

that::=T Ce e::=T Ce whether::=T Cwh
e:=T +wh Cwh €:=>T +wh Cwh

know::=Ce V know::=Cwh V know::=D +k V know::V
doubt::=Ce V doubt::=Cwh V doubt::V
think::=Ce V think::V

wonder::=Cwh V  wonder::V

With these lexical entries we obtain derivations like this (showing a conventional depiction on the left and the actual
derivation tree on the right):
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(e,¢,Titus know -s that Lavinia laugh -s):C

C‘P
ol
/\
C TP
‘ PN
DP(1) T
‘ /\
TS
/\
]‘:)t ]:‘)P v’
Titus t(1) v VP
v v’
VAN
R
know t Ce’
C‘e TP
that DP‘(O) T
D’ T vP
I
D t DP v’
\ N
Lavinia t(0) v \‘/P
v T VvV’
SN
[
laugh t

e:=T C  (Titus,e,know -s that Lavinia laugh -s):T

(e,e,know -s that Lavinia laugh -s):4+k T, Titus:-k
-siiv=> +k T

(e,know,that Lavinia laugh -s):=D v

e=>V =D v

know::=Ce V

that::=T Ce

Semantically, the picture corresponds to the derivation as desired:

CP selecting

theme
agent

AN

Titus  know

agent

that Lavinia laugh

We can also add nouns that select clausal complements:

claim::=Ce N proposition::=Ce N
With these lexical entries we get trees like this:

(e.e,Titus doubt -s the claim that Lavinia laugh -s):C
A

(e,that,

(e,know,that Lavinia laugh -s):v,Titus:-k

Titus::D -k

(e,know,that Lavinia laugh -s):V

Lavinia laugh -s):Ce
(Lavinia,e,laugh -s):T
(e,e,]augh -s):+k T‘,Lavinia:—k
-suiv=> +k T
(e,laugh,e):=D v

e:=>V =D v laugh::V

(e,laugh,e):v,Lavinia:-k

Lavinia::D -k

e::=T C (Titus,e,doubt -s the claim that Lavinia laugh -s):T

(e,e,doubt -s the claim that Lavinia laugh -s):4k T,Titus:-k

./\
-s:iv=> +k T(e,doubt,the claim that Lavinia laugh -s):v,Titus:-k

s:::m&zinia laugh -s):N
claimmia laugh -s):Ce

that:mlaugh -s):T

(e,e,laugh -s):

ECHAESS

k T,Lavinia:-k

+k T(e,laugh,e)iv,Laviniai-k

(e,%D v Lavinia::D -k

e:=>V =D laugh::V

/\
(e,doubt,the claim that Lavinia laugh -s):=IDitus::D -k
PN N _—
P "r Dl‘D(l) v e::=>V =D {the claim that Lav‘inia laugh -s,doubt,e):V
‘v “/ -s /11< Y ]Z‘)P (e,doubt,e):+k V,the claim that Lavinia laugh -s:-k
/\
doubt I‘D N‘umR t(1) doubt::=D +k(¥,the,claim that Lavinia laugh -s):D -k
/\
the Num’ the::=Num D {k,e,claim that Lavinia laugh -s):Num
A\
N‘umI\‘IP
N
N\
g
claim Ce’
Ce TP
[ P
that DP(0) T’
[
D T vP
S
D t DP v’
[ RN
Lavinia t(0) v \‘/P
v T V’
NN
Forey
laugh t

12.6.2 TP-selecting raising verbs

The selection relation corresponds to the semantic relation of taking an argument. In some sentences with more
than one verb, we find that not all the verbs take the same number of arguments. We notice for example that
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auxiliaries select VPs but do not take their own subjects or objects. A more interesting situation arises with the
so-called “raising” verbs, which select clausal complements but do not take their own subjects or objects. In this
case, since the main clause tense must license case, a lower subject can move to the higher clause.

A simple version of this idea is implemented by the following lexical item for the raising verb seem

seem::=T v

and by the following lexical items for the infinitival to:
to:=vT to:=Have T to::=Be T

With these lexical entries, we get derivations like this:

Titus v TP (e,¢,Titus seem -s to laugh):C

v T T e:=T C (Titus,e,seem -s to laugh):T

seem -s T vP (e,e,5eem -s to laugh):+k T,Titus:-k
to ]ZTP /v\ -siv=> +k T (e,sccwk

t(0) v VP seem::=T v (e,to,laugh):T, Titus:-k
voovov toii=v T (e,laugh,e):v,Titus:-k

laugh \‘/ (e,lﬁh,e)::\[)v Titus::D -k
t

e:=>V =D v laugh::V

Notice that the subject of laugh cannot get case in the infinitival clause, so it moves to the higher clause. In this
kind of construction, the main clause subject is not selected by the main clause verb!
Semantically, the picture corresponds to the derivation as desired:

theme

e
raising (from TP)

Titus seem -3 to praise Lavinia

agent

Notice that the infinitival to can occur with have, be or a main verb, but not with a modal:

CcpP
I
& Twe
| DP(1) T’
D“ T vP (e,¢,Titus seem -s to have been eat -ing the pie):C
‘ c‘ v‘ e::=T C (Titus,e,seem -s to have been eat -ing the pie):T
Titus v/\TP (e,e,seem -s to have been eat -ing the pie):+k T,Titus:-k
v T 1‘" -s:iv=> +k T (e,seem,to have been eat -ing the pie):v,Titus:-k
sc‘cm 7‘5 T/;LVCP seem::=T v (e,to,have been eat -ing the pie): T, Titus:-k

to Have’

Hz‘a,ve Be‘enP have::=Been Have(e,been,eat -ing the pie):Been, Titus:-k

been::=ving Been (¢,eat -ing,the pie):ving, Titus:-k

to::=Have T (e,have,been eat -ing the pie):Have,Titusi-k

have Been’

(e,eat -ing,the pie):=D ving Titus:D -k

Béen vingP
be‘en DP ving’ -ing::=>V =D vingthe pie,eat,e):V
t(1) ving VP (e,eat, )itk \‘/,the piei-k
YV ving DP(0) v’ cat::=D +k V(e,the,pie):D -k
cat -ing D’ vV DP the::=Num D -Ke,e,pic):Num

e::=N Num pie::N
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12.6.3 AP-selecting raising verbs
A similar pattern of semantic relations occurs in constructions like this:
Titus seems happy

In this example, Titus is not the ‘agent’ of seeming, but rather the ‘experiencer’ of the happiness, so again it is
natural to assume that Titus is the subject of happy, raising to the main clause for case. We can assume that
adjective phrase structure is similar to verb phrase structure, with the possibility of subjects and complements, to
get constructions like this:

CcpP
I
/\
C TP
| DP(0) T
b
1‘3 c‘ v‘ (e,¢,Titus seem -s happy):C
/\
Tit‘us v aP e:=T C (Titus,e,seem -s happy):T
v T DP/\a’ (e,e,5eem -s happy)‘:+k T, Titus:-k
seLm —L t([‘)) a/\AP -suv=> +k T (e,ku
A/\a A" seem::=a v (¢,happy,e):a, Titus:-k
happy L (e,happy,e):=D a Titus::D -k
‘: e::=>A =D a happy::A

‘We obtain this derivation with these lexical items:

e:=>A =D a. black::A white::A
happy::A unhappy::A
seem::=a v

The verb be needs a similar lexical entry

be::=a Be
to allow for structures like this:
(‘]P
&
/\
‘C TP
DP‘(O) T
D’ T BeP
\ VN \
D Be T Be’ (e,e,Titus be -s happy):C
\ [ = :
Titus be -s Be aP e:=T C (Titus,be -s,happy):T
t DP a’ e,be -s,happy):+k T, Titus:-k
N
t(0) a AP -sii=>Be +k T (e,be,happy):Be, Titus:-k
/\
1‘% T A" bei:=a Be (€,happy,e):a, Titusi-k
happy 1‘\ (e,happy,e):=D a Titus:D -k
/\
t e:=>A =D a happy::A

Semantically, the picture corresponds to the derivation as desired:

theme
raising from ap ﬂ
Titus seem -s  happy
experiencer

12.6.4 AP small clause selecting verbs, raising to object

We get some confirmation for the analyses above from so-called “small clause” constructions like:
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Titus considers Lavinia happy
He prefers his coffee black
He prefers his shirts white

The trick is to allow for the embedded object to get case. One hypothesis is that this object gets case from the
governing verb. A simple version of this idea is implemented by the following lexical items:

prefer::=a +k V prefer::=T +k V
consider::=a +k V  consider::=T +k V

With these lexical items, we get derivations like this:

D T vP (e,e,Titus prefer -s Lavinia happy):C
/\ /\
r‘) l DP v’ e:=T C (Titus,e,prefer -s Lavinia happy):T
/\
Tit‘us t(‘l) v VP (s,s,preferWls:—k
v T DPm’ -suiv=> +k T (s,prefeW:—k
V/\v L D" V/\aP (e,prefer,Lavinia_happy):=D v Titus::D -k
/\
prtes | Ll s

e:=>V =D v (Lavinia,prefer,happy):V

AP (e,prefer,happy):#»‘k V,Lavinia:-k
/\
A A" preferii—a +k V. (e,happy,e):a,Laviniai-k
/\
ha‘ppy | “A (e,happy,e):=D a Lavinia::D -k
/\
l

e:=>A =D a happy::A

Semantically, the picture corresponds to the derivation as desired:

theme

agent /\
small clauses '/\

Titus prefer -g Lavinia happ:

experiencer

CP
J,
T
C TP
DP(1) T
D" T vP (e,e,Titus prefer -s his coffee black):C
T~ T
]‘3 l DP v’ ex:=T C (Titus,e,prefer -s his coffee black):T
T T
Tit‘us c(‘1) v VP (e,e,prefer -s his coffee blzjck):+k T, Titus:-k
T~ .
v/\T DP(0) v’ _siiv=> +k T (e,prefer,his coffee black):v,Titus:-k
—
V/\v -L D‘7 V/\ap (e,prefer,his coffee black):=D v Titus::D -k
_—
pre‘fer ‘ D/}uml’l DP/'\a’ e::=>V =D v (his coffee,prefer,black):V
hL NLm’ t(‘U) a/\AP (e,prefer,black):+k ‘V,his coffee:-k
—
Num NP A a A“ prefer::—a +k V  (e,black,e):a,his coffee:-k
| 1\l black | L (é,bw (e,his,coffee):D -k
k !

e::=>A =D a black::A his::=Num D -k (e,ew
coffee

e::=N Num coffee::N
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DP(1)

v T DP‘(U) v
5 D’ TP
\ \ \ \
D T
\ RN

HaveP

<

Lavinia T

to  Have’

PN

Have BeenP

have Been’

Been

been

vingP

DP

(0)

ving’
ving
V  ving

eat -ing

12.6.5 PP-selecting verbs, adjectives and nouns
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We have seen adjective phrases with subjects, so we should at least take a quick look at adjective phrases with

complements. We first consider examples like this:

Titus is proud of Lavinia
Titus is proud about it

We adopt lexical items which make prepositional items similar to verb phrases, with a “little” p and a “big” P:

proud::=p A proud::A proud::=T a
e:=>Pp
of::=D +k P about::=D +k P

With these lexical items we get derivations like this:

Titus::D -k

(Lavinia,of,e):P

(e,of,e):+k P,Lavinia:-k

cP
i
/\
IS TP
| DP(1) T
N
]3‘ T BeP
b e
Tit‘us b‘c 7‘5 Bc/\aP (e,e, Titus be -s proud of Lavinia):C
| DP/\a* e:=T C (Titus,be -s,proud of Lavinia):T
t(‘l) a AP (e,be -s,proud of Lavinia): +k T,Titus:-k
A a A" _s:i=>Be +k T (e,be,proud of Lavinia):Be, Titus:-k
prc‘)ud | A/\pP beii—a Be (e,proud,of Lavinia):a, Titus:-k
t‘ p" (e,proud,of Lavinia):=D a
T
}\ PP e:=>A —D a (e,proud,of Lavinia):A
P T DP(/O)\P’ proudii=p A (e,of,Lavinia):p
v e T
bl
Lavlnia

of::=D +k P Lavinia::D -k
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Semantically, the picture corresponds to the derivation as desired:

Titus be -s|

proud of Lavin

raising from small clause

experiencer theme

Similarly, we allow certain nouns to have PP complements, when they specify the object of an action or some
other similarly constitutive relation:

student::=p N

student::N  physics::D -k
citizen::=p N

citizen::N Rome::D -k

to get constructions like this:

CcP
l,
T (e,¢,every citizen of Rome laugh -s):C
C TP
| e:=T C (every citizen of Rome,e,laugh -s):T
DP(1) T
| N (e,e,laugh -s):4+k T,every citizen of Rome:-k
D’ T vP T
N | T -siiv=> +k T  (e,laugh,e):v,every citizen of Rome:-k
D  NumP t DP v’
| | | (e,laugh,e):=D v (e,every,citizen of Rome):D -k
every Num’ t(1) v VP
| e:=>V =D v laugh::V every::=Num D -k (e,e,citizen of Rome):Num
Num NP v v’
| NG | e::=N Num (e,citizen,of Rome):N
N’ Voov sV
N | | | citizen::=p N (e,0f,Rome):p
N pP laugh t
| | e:=>P p (Rome,of,e):P
citizen  p’
(e,0f,€):+k P,Rome:-k
PP T~
/\ PN of::=D +k P Rome::D -k
RN
T
1‘3 t £(0)
Rome
cp
o
C P

| (e,¢,Titus know -s every student of physics):C

D’ P e:=T C (Titus,e know -s every student of physics):T
T~
r‘) ‘c DP v (e,e,know -s every student of physics):+k T,Titus:-k
/\ ///,\
Tit‘us c(‘2) v VP _sitv=> +k T (e, know,every student of physics):v,Titus:-k
v T DP(1) v’ (e,know,every student of physics):=D v Titus:D -k
V/\v 7‘3 rl’ V/\DP e:=>V =D v (every student of physics,know,e):V
kiow | D/\NumPt‘ t(‘l) (e,know,e):+k V,every st‘udcnt of physics:-k
cv‘cry N‘um’ know::=D +k V (e,every,student of physics):D -k
Num NP every::=Num D -k (e,e,student of physics):Num
/\
\ 1\‘1 e::=N Num (s,stw
N/\pP student:i=p N (e,of,physics):p
stud‘ent p‘7 e::=>P p (physics,of,e):P
PP (e,0f,€):+k P,physics:-k
_—
P p DP(0) P’ of::i=D +k P physics::D -k
O‘f ‘ D" P DP
bl
phyLics

If we add lexical items like the following:

be::=p Be
e:=>P =Dp
creek::N

seem::=p v
up::=D +k P



150 CHAPTER 12. MG ELABORATED

then we get derivations like this:

Cp

i
T T~
C TP
| DP(1) T’

/\
D‘7 T BeP
mn)PB{\T BL’
tl‘xe Nim’ b‘e L Be/\pP (e,€,the student be -s up the creek):C
/\
Nén\NP t‘ DP p’ e:=T C (the student,be -s,up the creek):T
| I\‘I t(‘l) p PP (e,be -s,up the creek):+k T,the student:-k
/\
I‘\T P/\p DP(0) P’ -si:=>Be +k T (e,be,up the creek):Be,the student:-k
student u‘p | D“ P/\DP bei:=p Be (e,up,the creek):p,the student:-k
D/}xml:’t t(‘U) (e,up,the creek):=D p (e,the,student):D -k
tlr‘xc Nl‘lm’ e:=>P =D p (the creek,up,e):P the::=Num D -k (e,e,student):Num
Num NP (e,up,e):+k P,the creck:-k e::=N Num student::N
1\‘1’ up::=D +k P (e,the,creck):D -k
LI the::=Num D -k (e,ew
crc‘ck €::=N Num creek::N

12.6.6 Control verbs

There is another pattern of semantic relations that is actually more common that the raising verb pattern: namely,
when a main clause has a verb selecting the main subject, and the embedded clause has no pronounced subject,
with the embedded subject understood to be the same as the main clause subject:

Titus wants to eat
Titus tries to eat

One proposal for these constructions is that the embedded subjects in these sentences is an empty (i.e. unpro-
nounced) pronoun which must be “controlled” by the subject in the sense of being coreferential. (For historical
reasons, these verbs are sometimes also called “equi verbs.”)

The idea is that we have a semantic pattern here like this:

theme

agent

N\

Titus try -s

to PRO praise Lavinja
control

coreferential, "controlled" pronominal elemen
We almost succeed in getting a simple version of this proposal with just the following lexical items:

try:=T V  want:=T V want:=T +k V
e:D

Notice that the features of try are rather like a control verb’s features, except that it does not assign case to the
embedded object. Since the embedded object cannot get case from the infinitival either, we need to use the empty
determiner provided here because this lexical item does not need case.

The problem with this simple proposal is that the empty D is allowed to appear in either of two positions. The
first of the following trees is the one we want, but the lexical items allow the second one too:
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CcP
i
/\
C TP
DP(0) T
pF
5 Nimet 57
tl‘rxc NL‘lm’ t((‘)) v/\VP (e,e,the student try -s to laugh):C
Num NP V/\T \‘/ e::=T C (the student,e,try -s to laugh):T
| NV v l V/\TP (e,e,try -s to laugh):+k T, the student:-k
l\l tr‘y ‘ t‘ ’I‘“ -siiv=> +k T (e,try,to laugh):v,the student:-k
/\
student T vP (e,try,to laugh):=D v (e,the,student):D -k
cL DP v e:=>V =D v (e,try,to laugh):V the::=Num D -k (e,e,student):Num
D‘7 \//\VP try::=T V (e,to,laugh):T e€::=N Num student::N
]‘D V/\v \l’ to::=v T (e,laugh,e):v
‘ laL‘lgh ‘ \‘/ (e,lw e:D
c‘ e:=>V =D v laugh::V
CP
L
T~
C TP
| DP(0) T
/\
D’ T vP
T T
mmpt‘ DP v’ (e,e,the student try -s to laugh):C
t}‘;c Num’ D“ v/\VP e:=T C (the student,e,try -s to laugh):T
Num NP r‘) V/\T \‘/ (e,6,try -s to laugh):+k‘T,thc student:-k
N’ V/\v 71 V/\TP _stiv=> +k T (e,try,to laugh):v,the student:-k
LI tr‘y | t‘ 1‘" (e,try,to laugh):=D v,the student:-k €D
stuc‘lcnt T/\VP e:=>V =D v (e,try,to laugh):V the student:-k
tL DP/\v’ try::=T V  (e,to,laugh):T,the student:-k
t(‘U) v/\VP tor:=v T (e,laugh,e):v,the student:-k
V/\v \‘/ (e,Jaugh,e):=D v (e,the,student):D -k
lau‘gh | \‘/ e::=>V =D v laugh::V the:=Num D -k (e,e,student):Num
t‘ €::=N Num student::N

This second derivation is kind of wierd — it does not correspond to the semantic relations we wanted. How can we
rule it out?

One idea is that this empty pronoun (sometimes called PRO) actually requires some kind of feature checking
relation with the infinitive tense. Sometimes the relevant feature is called “null case” [4, 41l [16]. (In fact, the proper
account of control constructions is still controversial — cf., for example, Hornstein, 1999.)

A simple version of this proposal is to use a new feature kO for “null case,” in lexical items like these:

e:: D -kO
to::=v +k0 T to::=Have +k0 T' to::=Be +k0 T

With these we derive just one analysis for the student try -s to laugh:
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C‘P
o
/\ (e,e,the student try -s to laugh):C
c TP T
| T~ e:=T C (the student,e,try -s to laugh):T
DP(1) T |
| TN (e,e,try -s to laugh):+k T,the student:-k
D’ T vP - T
/\ ‘ /\ -siiv=> +k T (e,try,to laugh):v,the student:-k
D NumP t DP v -
| | | T~ (e,try,to laugh):=D v (e,the,student):D -k
the Num’ t(1) v VP /\ _— T
PN PN \ ei=>V =D v (e,try,to laugh):V the::=Num D -k (e,e,student):Num
Num NP v T v’ T T
| | N | T try:=T V  (e,to,laugh):T e:=N Num  student::N
N’ vV v sV TP |
| | | | N (e,t0,laugh): + k0 T,e:-kO
N try t DP(0) T T
| |~ tori—v +kO T (e,laugh,e):v,e:-k0
student D’ T vP
[ N (e,laugh,e):=D v e::D -kO
D to DP v T T~
\ \ N e:=>V =Dv  laugh:V
" /v\ V‘P
I
laugh \‘/
t

Notice how this corresponds to the semantic relations diagrammed on the previous page.

12.6.7 Modifiers as adjuncts

We allow PP complements of N, but traditional transformational grammar also allows PPs to adjoin on the right
of an NP to yield expressions like

student [from Paris]
student [from Paris| [in the classroom]
student [from Paris| [in the classroom]| [by the blackboard].

Adjective phrases can also modify a NP, typically adjoining to the left in English:

[Norwegian| student
[young| [Norwegian| student
[very enthusiastic| [young] [Norwegian] student.

And of course both can occur:
[very enthusiastic] [young] [Norwegian] student [from Paris] [in the classroom] [by the blackboard].

Unlike selection, this process seems optional in almost all cases, and there does not seem to be any fixed bounds
on the number of possible modifiers, so it is widely (but by no means universally) thought that the mechanisms
and structures of modifier attachment are fundamentally unlike complement attachment. Our mechanisms for
adjunction allow that.

To indicate that APs can left adjoin to NP, and PPs and CPs (relative clauses) can right adjoin to NP, we use
the notation:

left Adjoiner|N]=[a]
right Adjoiner[N]=[p,Cwh]

Similarly for verb modifiers, as in Titus loudly laughs or Titus laughs loudly or Titus laughs in the castle:

left Adjoiner|[v]=[Adv]
right Adjoiner|[v]=[Adv,P]

For adjective modifiers like very or extremely, in the category deg(ree), as in Titus is very happy:
left Adjoiner[a]=[Deg]|

Adverbs can modify prepositions, as in Titus is completely up the creek:
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left Adjoiner|[P]=[Adv]

The category num can be modified by qu(antity) expressions like many,few little,1,2,3,. .. as in the 1 place to go is
the cemetery, the little water in the canteen was not enough, the many activities include hiking and swimming:

left Adjoiner[Num|=[Qu]

Determiners can be modified on the left by only, even which we give the category emph(atic), and on the right by
CPs (appositive relative clauses as in Titus, who is the king, laughs). We would also like to DP adjuncts of DP.
These are the appositives, as in Titus, the king, laughs. We can get these things with

left Adjoiner[D]|=[Emph]
right Adjoiner[D]|=[Cwh,D]

12.7 Some additional extensions

Although our grammar has many mechanisms, some linguists think that it does not have enough. Here we describe
some additional ideas that could easily be added, without changing the basic properties of the grammars.
12.7.1 Left-merge and right-merge (parameterized?)

12.7.2 ¢ feature and agreement marking

Cf., e.g. Onambele’12 on agreement in the Bantu language Ewondo.

12.7.3 Multiple wh-movement
Gértner and Michaelis [10]

12.7.4 Late adjunction

Frey and Gértner’02 mention that there are various arguments for ‘late adjunction’ in the Chomskian tradition,
and this idea has been developed by Gaertner and Michaelis’03.
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Exercises

1. Topicalization. The grammar of this section allows wh-movement to form questions, but it does not allow
topicalization, which we see in examples like this:

Lavinia, Titus praise -s
The king, Titus want -s to praise

One idea is that the lexicon includes in addition to DPs like Lavinia, a -topic version of this DP, which moves
to a +topic specifier of CP. Since any DP can be -topic, though, it might be better to simply let the topic
position be +D, as we did for movement to subject position in JI2.T.71 Can you extend the grammar to get
these topicalized constructions in this way? If so, present (i) a complete derivation and (ii) a brief linguistic
assessment of this approach. If not, (i) explain why -D does not work and instead present a complete derivation
using -topic, and (ii) write a brief linguistic assessment of this approach.

2. Put and give: We did not consider verbs like put which require two ‘internal’ arguments:

the cook put -s the pie in the oven
* the cook put -s the pie
* the cook put -s in the oven
the cook gave me some pies
the cook gave some pies to me
? the cook gave some pies

One idea about these constructions is mentioned in ISAT:

(114) Give = [HAV+CAUS]

V.
BP

P

V'J
/\

John
v VP
| /\
CAUS W -
S
someone v DP
| =~

HAV  something
(115) Put = [BE+CAUS]

vP
DpP v
—_
John
v VP

‘ /\
CAUS 5 %
e
potatoes V/\PP
| A

BE  in the pantry
ISAT: p317

Notice that HAV can move up to CAUS by head movement, producing a [HAV CAUSE| complex which could
be pronounced put. And BE can move up to CAUS to produce a [CAUS BE]| complex which could pronounced
give. Based on this idea, present complete MG derivations that are as close to these proposals as possible, one
derivation for each of these examples (here the places where the HAV, BE originated are marked with ___ ):

the cook [HAV CAUS| -0 me _ some pies.
the cook [BE CAUS] -s the pie __ in the oven

3. Morphology. ISAT extends the previous idea to morphology too, as we see in these examples:



12.7. SOME ADDITIONAL EXTENSIONS 155

DP v’
— -h
the cold /\ e /\
v vP
| /\
CAUS - AP /\
|

N
ify DP A | v AR
| A v cAUS 2 N N
the oil  solid | A ¥ DP A
dry BEeeM | \ |
BECOM fg  dry
ISAT: p381 ISAT: p382

No head movement is shown on the left, but clearly we could move solid to ify and then move solid -ify to
produce a [solid ify CAUS| complex, in a way similar to the formation of [dry BECOM CAUS]| on the right.
Present complete MG derivations that are as close to these proposals as possible, one derivation for each of these
examples:

the cold [solid -ify CAUS] the oil
she [dry BECOM CAUS] this thing

4. Copy raising. Some English dialects (like mine) allow raising verbs to appear with certain finite clauses, as in
these examples [T, [26]:

John seems like he wants to work
Emintrude looks like the cat has got her tongue
Mary appears as if she has seen a ghost

Extend the grammar to get at least the first of these sentences, presenting a complete derivation, and then write
a brief linguistic assessment of your approach.

5. ECM constructions. Consider sentences like this:
Mary believes John to be in the room

It is as if John gets its case as the object of believes, but originates in the embedded infinitival. Write lexical
items which will allow this kind of analysis, and show the completed derivation.

Optional extra step: Collins [5 pp.96-104] uses this example in his argument for asymmetric feature checking
and particularly for Chomsky’s [3] story about +interpretable features. Assess these arguments.

6. Head vs. phrasal movement. Dave Schueler (p.c.) points out that our formalization of head movement in
the configuration of selection is similar to a suggestion made by Pesetsky & Torrego [24]:

(5a) What did Mary buy?

In (5a), [a feature] T on C is attracting a feature of its own complement — a constituent with which C has just
merged. If the entire complement of C were to be copied as Spec,CP, C would, in effect, be merging with the
same constituent twice. We suggest that it is precisely in these circumstances that the head of the complement,
rather than the complement itself, is copied. In the present context, this suggestion is speculative, but it is in fact
the flip side of a more familiar generalization: the Head Movement Constraint of Travis (1984). Travis's condition
states that head movement is always movement from a complement to the nearest head. Our condition dictates
that movement from a complement to the nearest head is always realized as head movement. We may call the two
together the “Head Movement Generalization™:
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(13) Head Movement Generalization

Suppose a head H attracts a feature of XP as part of a movement operation.

(i) If XP is the complement of H, copy the head of XP into the local domain of H.
(ii) Otherwise, copy XP into the local domain of H.

Describe some cases where the Head Movement Generalization would not be followed in an MG. (If you paid
attention in the section above, you have not far to look for some first examples.) Do actual constructions in
human languages that really look like they call for such a thing?
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Chapter 13 MG simplified

Let’s see whether we can get approximately the same coverage as the grammar of the previous chapter with a
grammar of similar complexity but with mechanisms that are much simpler, using this idea:

e There is just one operation for building structure, still pronounced ‘merge’ and written e but slightly different
from anything we have considered earlier.

Once this one idea is properly introduced, we have these results:

e All features are persistent, there if you need them more than once.

e Feature ordering in lexical items determines cartography and blocks improper movement.
e Every category is a phase.

e Head movement effects can be obtained (or at least some of them).

e Agreement effects can be obtained (or at least some of them).

The changes sound huge, but really they are not. In effect, this chapter brings insights of §10 to the fore to find
a simpler perspective, without changing anything more in mainstream grammar than necessary. The conclusion
reviews a number of outstanding problems, some of which look serious, but we can speculate optimistically that
perhaps we are getting closer to the truth than has been possible before.

13.1 One mode of combination

We use the single mode of combination suggested by Chomsky, subsuming merge and move by relaxing the require-
ment that each tree be independently derived. But we can keep the grammar formalism clear and precise by moving
some of the complexity into a syntactic valuation function ((-)) and into the definition of a checking relation x. We
can then show that it is (possibly more succinct, but) weakly equivalent to our earlier one. So the proposal is that
all syntactic complexes are built by the operation,

.(tl, tg) = {tl, tg} if <<t1>> X <<t2>> is defined.

As will become clear in a moment, {(t1)) X ((t2)) is not defined when t; = 3, so the value of e(t1,t5) is always a set
with two elements[] The reason for the syntactic denotation function () is that the question of whether o(t1,2)
is defined typically depends on much less than the whole of the trees t1,t2. The function {(-)) specifies just those
properties of syntactic objects which could be relevant to whether e is defined. It is similar to a ‘labeling’ function
[I]. The relation x, pronounced ‘checks’, is not symmetric, and so the merge relation e is not symmetric either.
In a set {t1,t2} = {to,t1}, the values ((t1)) and ((t2)) make immediately clear whether either checks the other, and
hence also whether the set {¢1,%2} is built by the grammar.

The pronounced value of any syntactic structure ¢ is given by a phonetic denotation function ((t)). And the
interpreted value of any syntactic structure is given by a semantic denotation function [t].

Obviously, the aim is not to shift complexity from one part of the grammar to another, but rather to keep the
whole grammar as simple as possible by factoring relevantly different aspects and defining each with exactly those
properties that are essential, no more and no less.

13.2 Persistent features

The idea introduced for EPP in §I2.T.Tlon page seems widely applicable, and so we will keep it in the simplified
system, but the implementation can be adjusted as follows.
XXX

1This is not a crucial property though. We consider an argument for relaxing it in §13.7] below.
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13.3 Feature ordering, cartography, and improper movement
13.4 Every category is a phase

13.5 Head movement subsumed

There are two ways to get the effects of head movement using only phrasal movement. One is to move the arguments
of the head out of its projection, so that the phrasal projection of the head contains only the head. One problem
with this strategy is to explain why, if the arguments are moving, they often seem to stay in their original order.
Another problem is that the constituencies do not seem right. Another way to get the effects of head movement is
to put less in the phrasal projection. I have not seen this explicitly proposed in the literature as a replacement for
head movement, but it is implicit in the kind of morphology that we see in some “nanosyntax” proposals (syntax
defined over sub-lexical elements) and in exercises 2,3 of the previous chapter, on page [[54 It is the idea pursued
here. In effect, we use movement as a diagnostic of phrase-hood, and ‘rolling up’ derivations to get verb clusters of
various kinds as suggested by Koopman, Kayne and others.

13.6 Agreement subsumed

13.7 Adjunction again

We can have a DP adjunct of DP, so should the relation e allow some reflexive instances?

13.8 An even simpler English

To illustrate how everything works together, let’s attempt to present a grammar of English that is similar to the
simple English of §I2.6] but now using only *.

= more coming <«

13.9 Implementation
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Chapter 14 MG with copying

The World Atlas of Linguistic Structures shows that reduplication of phonetic material within a word is found in a
large proportion of the world’s languages [30]:

. Productive full and partial reduplication '277
© Full reduplication only ’ 35
(O No productive reduplication | 56

European, Siberian, and Inuit languages appear to be exceptional in having rather little reduplication. In the
world’s languages, we also find copying of full words and sometimes larger phrases in the syntax of many languages.
This chapter briefly considers arguments for various kinds of syntactic reduplication, and then explores how MGs
can be extended to allow this.

14.1 Earlier analysis, rejected

MGs can define copying, as we saw in this simple MG for L,, = {zz| = € {a,b} '} discussed earlier:

ar=A +1T-1 b:=B +1 T -1
ar=T 41 A -r b:=T +r B -r
e=T +r +1T e:T -r-1
TP
/\
> TP(4) N
/\
> > TP(2) i BP(3) T
/\
> < > < TP(0) T T BP AP(1) B’ T TP
PN N T N PN N N |
< b > < el ™ T AP b t@3) TPO) A B TP t(4)
N /\ VN L N
a < b T a t(1) t(0) A TP b t(2)
VN | I
a a t(0)
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Those trees for abab are derived by this derivation:

ababT

a b:+l1 %,a b:-1

e+r +1T,a ‘b:—l,a b:-r

e:=T +r +1T ab:T -La b:-r
b:+1T -l,a b:-r,a:-1
b:=B +1T-1 a b:B -r,a:-1
b:+r B -r,a:-l,a:-r

b:=T m,a:-r
a:+1T —l,z‘Lz—r,e:—l
an=A+1T-1 a:A re-l
a+r A —r‘ e-r -1

ar=T 41 A -r €T -r -1

Note that this approach requires that every copiable element have its own category, instead of copying the derivation
introduces pairs of identical elements, and every copied element moves. This is not a believable as a model of
syntactic reduplication in human languages: it misses the simple copying generalization.

14.2 Copying in syntax

Surprisingly, it is quite common to find reduplication proposed among syntactic mechanisms on grounds completely
independent of any apparent copying in pronounced forms. In particular, many linguists think that the movement
operation involves some kind of copying.

In the tree-based definition of MGs, the move operation can be drawn like this:

+a = B

3

That is, when the the head of a tree has the features +f«, and some subtree has the features -f3, the subtree
is taken from its original position (i.e. it is deleted there) and move to specifier position (i.e. it is copied there),
cancelling the features. This is like the trace theory of movement: the moved constituent is replaced by something
that does not have structure and is not pronounced. One unsatisfying fact about this operation, and something
that distinguishes it from merge, is that we make a change inside of a structure that is already built [l When we
‘flatten’ the move rule, that property goes away — we no longer need to change anything in already-built structures,
because we never put the -f3 subtree into the original structure. But many linguists think that this flattening is
the wrong ideaE or at least an importantly different one.

More popular than our MG move operation are two other ideas about movement. The copy theory says that
when a phrase moves, the original stays where it is but is not pronounced. If we use strike-out to indicate parts of
the structure that are not pronounced, this idea about move can be depicted like this:

1For this reason, Chomsky says that it violates the simplicity consideration he calls ‘no tampering’. If the trace is not simply a
deletion site but has an index or something like that, then the trace theory also violates the ‘inclusiveness’ which suggests that everything
should come from the lexicon; nothing should be inserted by a syntactic operation.

2In the case of MGs, we can prove that flattening does not eliminate anything crucial, but perhaps the formulation of the true
story about constraints on movement in human language will require the full trees, or perhaps there is late adjunction which requires
unboundedly large trees, or something!
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+fa > : =
3

A different idea, the multidominance theory, says that when a phrase moves, what really happens is that it one
of the constituents already attached in the structure gets attached again, so that it now has two mothers (or more
if it moves multiple times). This idea can be depicted like this:

+fa > : =
3 A

B

One argument for the copy or multidominance theory is that, after movement, some processes seem to act like the
moved constituent is still in its original position. Most notably and obviously: at least sometimes, it seems that
the moved constituent is interpreted as if it is still in its original position, as in the (apparently) simple case of
topicalization of the object of a verb, in which the fronted element is of course still the object of the verb:

3

(0) Mary, I like

This argument is not decisive, since we can define the interpretation function to do this even with the MG approach.

Another argument in favor of copy or multidominance theory comes from the idea that, at least sometimes, a
moved element is pronounced (or partially pronounced) in more than one of its positions. For example, this kind
of analysis has been proposed for verbal clefts in some languages. In §8 of ISAT, English clefts are introduced,

(1) Tt is Mary (that) he likes  the most

(2) Tt is after class (that) I can most easily meet with you

Here something moves, and nothing is repeated. But in the the African Kru language, Vata, Hilda Koopman’84,97
noticed that in verbal clefts, verbal elements are repeated:
(3) pa 0 ki mépa a
throw you will it throw Q
‘Are you going to throw it?’ [throw as opposed to roll]
(4) pa 1 k& mépa
throw I will it throw
‘T will throw it’
Koopman 1984 proposed that these were instances of movement of the V to C, rather like the subject-auxiliary

inversion in English polarity questions. Kandybowicz 2008 observes something similar in another Niger-Congo
language, Nupe:

(5) Bi-ba Musaa  ba nakan o
cut Musa FUT cut meat FOC

‘It is cutting that Musa will do to the meat [as opposed to say, cooking]’
And this example is similar, from the Niger-Congo language Fongbe, reported by Lefebvre,

(6) Lon wg stnd s Lon
jump it is man D jump

‘It is jump that the man did [not e.g. run away]|’
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Many linguists have observed what looks like copying in syntax, in many languages, copying verbs, wh-words, clitic
pronouns, and morel]

We observed on page Ml that copy constructions in English seem to exist only in rather peripheral parts of the
grammar [23]:

(NP-or-no-NP) Linguistics or no linguistics ~ (NP-shmNP) Linguistics shminguistics
(a-NP-is-a-NP-is-a-NP) A dog is a dog is a dog (CP or CP?) Is she beautiful or is she beautiful?

These are not central in English grammar, and may not share all the properties of the better-integrated reduplication
constructions mentioned above, but we might nevertheless wonder how normal speakers of English compute their
analyses! We need some way to compute an appropriate analysis of

Linguistics exam or no linguistics exam, I am going to the party!

In the copy theory, we could say that, in these cases, more than one of the moved copies is pronounced. And in
the multidominance theory, we would say that the phrase can be pronounced under more than one of its mothers.
But in MGs, we have no copying mechanism, and because there is only one moved phrase, of course it is never
in more than one place at a time! The MG approach to copying on page [I61] requires pairs of identical elements,
distinguished by category, to be introduced, instead of copying them.

14.3 MGCs

Greg Kobele’06 shows that it is not hard to add copy-movement to MGs. We can add a ‘copy’ diacritic to our
movement triggers, so instead of just triggers +f we can also have copy-move triggers + f which are used by this

new case of move:
>

move(t;[+f]) = t2/\t1{t2[‘f] > la}

(The flattened version of this approach is also straightforward. The ‘persistence’ of the string is treating in a way
analogous to the persisitence of features: merge3 optionally both launches and copies the moving string in case the
trigger for move is a copy-move trigger.)

Example. With this new copy rule, we can define the xx copy language much more easily than we could before!
Consider this grammar:

eV e=VT-t
ax=VV =T+t C
b:=V V

In this grammar, the 3 lexical items on the left allow us to define strings of category V, and that set is
¥ ={a,b}" = {¢,a,b,aa,ab,ba,bb, aaa, ...}

The first lexical item on the the top right selects any V to form a T which needs to be licensed in a +t position.
The last lexical item forms a C by selecting T and then copy-moving the -t.

aba‘mb:C
ab:+t C,ab:-t
e:=T +t C ab:T -t

e::@{
=V VbV

b::=V VeV

a

Let’s briefly consider a few more natural examples. . .

3Cf. Abels 2001; Boskovié¢ 2001; Bobaljik 1995, 2002; Brody 1995; Franks 1998; Groat and O’Neil 1996; Grohmann 2003; Hiraiwa
2005; Hornstein 2001; Landau 2006; Lefebvre 1992; Lidz and Idsardi 1998; ManasterRamer 1986; Nkemnji 1995; Nunes 1995, 1999,
2004; Pesetsky 1997, 1998; Richards 1997; Runner 1998; Stjepanovic 2003; Wilder 1995; and others.
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14.4 Example: MGC for verbal clefts

Consider this grammar:

e=V=D=Dv e=T+¢C
throw::V -c
you::D it::D
Then we have:
throw you will it throw:C
you will it throw:+¢ C,throw:-¢
e:=T +¢ C you will it throw:T,throw:-¢
will it throw:+D,you:-D,throw:-¢
will::=v +D T it throw:v,youw:-D,throw:-¢
you::D it throw:=D v,throw:-¢
it::D  throw:=D =D v,throw:-é&
e:=V =D =D throw::V -c

14.5 Example: MGC for X-or-no-X

We have not worried yet about coordinate structures. They have many special properties [|! But for the sake of
discussion, let’s adopt this simple analysis for the moment:

fight::N or:=N =N N
flight::N

So we have
= PIC <

To get a few more complex NPs, let’'s add also these simplistic rules for noun compounds and NPs with PP
modifiers

linguistics::N  e:=N =N N

exam::N

e:=ND from::=D P

e:=P =N N about:=D P
= PIC <

The key ingredient for NP-or-no-NP is something like this, assuming that the categorial feature N can persist as a
movement feature —NE

or no::=N +N OrNo.
Finally, to form our examples we can ignore the derivation of the rest of the sentence
let’s party: T
With these lexical items we have:

= PIC <

4We discussed various ideas about adjunction in §12.6.71 and §I3.71 There are (no surprise) many ideas about noun compounds in
the literature too. Cf. e.g. for a very different idea from the simple one presented here.

5This idea was introduced for EPP effects in §I2.1.11on page [[35} and adopted in the more minimal account again in §I3.2] on page
1159
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14.6 MGC languages are not mildly context sensitive

Joshi’s hypothesis that human languages are weakly and strongly mildly context sensitive MCS, mentioned on page
03 has one component — ‘constant growth’ — which might seem surprising. Recall that a class of languages is MCS
if, and only if,

e It properly include the context free languages

e Every language can be parsed in polynomial time

e The class includes some (but not all) crossing dependencies

e The languages have the constant growth property: for each MCS language, there is a finite constant k£ such
that if a string s has length 7 and some string s’ has length greater than i + k, then there is at least one string
of intermediate length between them.

Let’s consider this last condition more carefully. Suppose we try to design a language with big gaps between string
lengths. We could hava a lexical item which is big, and a construction that doubles or triples that length:

e:=X X e:C
aaaaaaaaaaX e:=X C

Obviously this grammar generates {a'%%|z > 0}, which satisfies the finite copying condition with k& = 10. We could
try a little harder, like this:

e:=XX e:C
aaaaaaaaaaX e:=Y C
€:=X =X =X=X=X=X=X=X=X=XY

e=Y =YY

Obviously this grammar generates {a'%%?|x > 0}, which satisfies the finite copying condition with k& = 100.
How could we possibly violate the finite copying condition? We need a different kind of mechanism for combining
constituents, and we have just defined such a mechanism! Consider this grammar:

aX -f e=X X e=X+fC
This grammar provides, for example, these derivations:
= PIC <

It is not hard to see that this grammar with copying movements derives the language {a®"|n > 0}. It is obvious
that this language violates the finite copying condition: considering the strings of the language in order of length,
the differences in lengths increase exponentially without bound

_ 20 2t 22 23 24

L={ o, ¥, o*, a¥, a® ..
={ a, aa, aaaa, GQAAGQAG, GAAAGAAAAGAAGAAATG, ...}
k= 1 2, 4, 8,

Obviously, this kind of growth occurs when we can have copies of things with copies in them. Does that ever happen
in natural language? There is some evidence that the most plausible grammars are powerful enough to allow it, and
some controversy about whether we actually see it in forms that are small enough for us to have clear judgements
(or show other evidence of analyzing as such).

14.7 Recognizing, parsing MGCs

. We saw in §9.3] on page [[13]that MGs are a very succinct notation for a certain kind of MCFGs. In the same way,
MGCs are a succinct notation for a certain kind PMCFGs, where that stands for the ‘Parallel Mulitiple Context
Free Grammars’ defined by Seki&al’91. Seki&al observed that PMCFGs can be efficiently parsed with a CKY-like
method.

SMichaelis and Kracht’96 prove that this language cannot be defined by any MG using Parikh’s theorem. MG definable languages
are ‘semilinear’, but this one is not.
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14.7.1 Earley-like parsing for MGCs

We first develop an idea based on the work of Ljungl6f’12 and Angelov’09, based on the first steps which were taken
in §AngelovSecl.

= XX <

14.7.2 A puzzle: Late adjunction in MGCs
14.8 Reflections on the MCS hypothesis

Since the empirical arguments for copying in human language seem extremely good, why does Joshi’85 propose
the MCS hypothesis that excludes grammars that copy? First, note that one could say that the shift from MGs
to MGCs is not really a change in syntax: the way the syntactic derivation is calculated is the same, with only a
change in the spellout function. But even so, the MCS hypothesis deliberately excludes grammars with copying
functions, since these grammars can violate the finite copying condition. Another idea is that perhaps the copying
allowed by MGCs is much more liberal than necessary: in particular, it allows copies of copies, without bound,
and perhaps this really goes beyond anything in human grammars. I think this is Joshi’s view, and certainly it is
harder to argue against. Some considerations favoring copies of constituents with copies in them were very briefly
suggested here, but the matter deserves more careful consideration.
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Chapter 15 Below syntax: Morphology, phonology

A wide range of languages can be parsed efficiently — the whole, vast class of languages definable by minimalist
grammars with copying. We would like to achieve not just feasibility here, but feasible in the sense of near linear
time on easily understood utterances of normal fluent speech. But we have been considering the parsing problem as
if it applies fundamentally to sequences of printed words. Obviously, in ordinary conversation we deal with (some
analysis of) acoustic input, and in reading we deal with (some analysis of) visual input. How close to the acoustic
and visual interfaces will the syntax take us, and what are the inputs at those most superficial levels? Are there
other kinds of grammars (morphology, phonology, phonetics) at those levels?

15.1 Phonology: What is it?

We used systems of rewriting rules, particularly as formulated in SPE, to give concreteness to our
work and to the paper. However, we continually sought solutions in terms of algebraic abstractions
of sufficiently high level to free them from any necessary attachment to that or any other specific
theory. . . From a practical point of view, the result of the work reported here has been a set of powerful
and sometimes quite complex tools for compiling phonological grammars in a variety of formalisms
into a single representation, namely a finite-state transducer. — Ronald Kaplan & Martin Kay [7]

OT raises a particularly interesting theoretical question in this context: it allows the specification
of a ranking among the constraints and allows lower ranked constraints to be violated in order for
higher ranked constraints to be satisfied. We ... study the formal properties of one particular case
of this general formalization in which the mapping from input to possible output forms, GEN, is
representable as a finite state transducer, and where each constraint is represented by means of some
total function from strings to non-negative integers, with the requirement that the inverse image of
every integer be a reqular set. These two formal assumptions are sufficiently generous to allow us to
capture most of the current phonological analyses within the OT framework that have been presented
in the literature. We prove that the generative capacity of the resulting system does not exceed that
of the class of finite state transducers precisely when each constraint has a finite co-domain. . .
— Robert Frank & Giorgio Satta [4]

15.1.1 Preliminaries

Let’s consider the following English and American sounds (plus a few diacritics), listed here in the standard IPA
notation, Mitton’s ascii notation, and the ‘Arpabet’ ascii notation of CMU and TIMIT[]

1The standard NLTK installation includes a sample from the TIMIT corpus — a selection of sentences spoken and transcribed in
different dialects of English. For the CMU pronouncing dictionary: http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/, and Hayes
has a corrected version of the CMU dictionary here: http://www.linguistics.ucla.edu/people/hayes/251English/.
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IPA Mitton ARPA  example | IPA Mitton ARPA example
i i IY see ® & AE cat
& & AE abnormal I I IH hip
€ e EH bed ) @ AH about
u u UW food A A% AH bud
U U UH foot ® 0 AA cot,pond
3 3 ER fur a A AA father
) (0] AO caught er el EY day
ar al AY my or ol oy boy
av alU AW cow i) 1@ beer
€ e@ hair [$5) va pure,moor
ou QU oW go p p P pi
t t T tie k k K kick
b b B by d d D die
g g G guy f f F fie
v v \Y vie S S S sigh
Z V7 Z Z00 ) S SH shoe
0 T TH thin o} D DH then
3 Z ZH beige I r R red
h h HH head j j Y yet
I R R far 1 1 L lie
w w W% wed m m M meet
n n N neat i} N NG sing
& dZ JH joke i tS CH choke
r d D muddy ’ ’ 1 primary stress

The table above is generated by ipa.py, which is also used to define some basic conversions between notations.
The Mitton [I0] dictionary is in mitton.py and the CMU dictionary with Hayes’ corrections is in cmuHayes.py.
These dictionaries will be useful for practicing with our phonology.

There are a number of free finite state analysis toolsE but it is valuable to write some of your own too, to
understand how they work.

Let’s look at simple python implementations for nondeterministic finite automata with e transitions.

15.1.2 SPE-like rules for alternations

The question of whether nasalization is phonetic, not phonological, is addressed in [2]

15.1.3 Rules for phonotactics
15.1.4 OT phonology

15.1.5 Unconditioned variation, and reduction in fluent speech

The king prefers a nice day / an ice day
Phonetic and acoustic reductions in fluent speech have [3]

15.1.6 Orthography: graphemes, unconditioned variation

A straightforward approach to using machine learning methods to identify grapheme/phoneme alignment is proposed
in ISIE

One source of unconditioned variation, mentioned in Zuraw’s handout, comes from the wide range of scripts and
typefaces. Another source of unconditioned variation is spelling errors. OCR technologies have grappled with both
of these for many years, but there seems to be rather little psycholinguistic research on these factors in reading.

2See the free finite state tools available from the Xerox project http://www.stanford.edu/ laurik/fsmbook/home.html and from AT&T
http://www?2.research.att.com/ fsmtools/fsm/.
3And, remarkably, this idea was awarded a patent in 2011: http://www.google.com/patents/US7991615.
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15.2 Morphology in the syntax? Zero-level 4 spellout

Morphology, we argue, may be reduced entirely to the function that spells out the syntactic tree by
choosing and inserting phonologically contentful lexical items. — Patrik Bye & Peter Svenonius [1]
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15.3 Phonetics in the syntax?

21 9] 1]
Hayes et al’02[6], 5]
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15.4 Orthography and reading

Linguists focus mainly on spoken language, but obviously the human ability to record language for visual recognition
has transformed our society in so many ways that it becomes very hard for us in the 21st century to imagine life and
culture without written records of any kind. It seems, at least upon first reflection, that reading requires training of
a kind that is not necessary for the acquisition of spoken or signed language. For spoken language, it is apparently
enough for a child to be immersed in any approximately normal community of speakers; no formal schooling, no
regimented and tested memorization of words is required. Sign languages show that the distinction of reading and
writing is not the visual medium; the schooling may be required because written characters are typically recognized
quietly, privately.
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Chapter 16 Above syntax: Natural logic, discourse dynamics

We have noted that minimalist grammars are designed to produce meaningful expressions by the arrangement of
meaningful parts of those expressions. This is the idea of compositionality, which is suggested by these famous lines
from Frege 1923:

It is astonishing what language can do. With a few syllables it can express an incalculable number of thoughts,
so that even a thought grasped by a terrestrial being for the very first time can be put into a form of words
which will be understood by someone to whom the thought is entirely new. This would be impossible, were
we not able to distinguish parts in the thought corresponding to the parts of a sentence, so that the structure
of the sentence serves as an image of the structure of the thought. [12]

The point of parsing is to identify the interpreted elements and their manner of assembly. This allows the meaning of
complexes to be calculated from the meanings of their parts, but this a “god’s eye” perspective: given the mappings
from words to their referents (usually understood to be elements of types built from e and t, or e and t and worlds
and times), the semantics shows how to compute a mapping from sentences to truth values (or to functions for
worlds to truth values or to situations). If we regard the mind of the language user as a computational engine,
though, often we are dealing with expressions whose meanings we know very little about, and everything that
happens is just further computation on the structural analysis. That is, the parse is the basis of further inferences
about what the speaker intended:

... the picture of meaning to be developed here is inspired by Wittgenstein's idea that the meaning of a word
is constituted from its use ... Thus the meaning of the sentence does not have to be worked out on the
basis of what is known about how it is constructed; for that knowledge by itself constitutes the sentence'’s
meaning. . . then compositionality is a trivial consequence of what we mean by “understanding” in connection
with complex sentences. (Horwich [24] pp.3,9])

PF and LF constitute the ‘interface’ between language and other cognitive systems, yielding direct repre-
sentations of sound, on the one hand, and meaning on the other as language and other systems interact,
including perceptual and production systems, conceptual and pragmatic systems. (Chomsky [5, p.68])

The output of the sentence comprehension system. .. provides a domain for such further transformations
as logical and inductive inferences, comparison with information in memory, comparison with information
available from other perceptual channels, etc...[These] extra-linguistic transformations are defined directly
over the grammatical form of the sentence, roughly, over its syntactic structural description (which, of
course, includes a specification of its lexical items). (Fodor et al. [9])

We will aim here to get an understanding of human sentence understanding that is analogous to our understanding
of how a simple device like a calculator works, in two complementary parts: a semantics that tells us what is
represented, and an inference system that tells us how we reason with those representations. Following linguistic
tradition, we focus on the semantics first, but with an eye on capturing the inferences that normal human speakers
find natural.

Very often, structural ambiguities in morpheme sequences corresponds to a semantic ambiguity; two different
derivations of the same sequence of words often have two different interpretations. (In many cases, context may
make clear which of those two interpretations is the “intended” one, as we will discuss in the next section.) So we
do not interpret the morpheme sequences directly. Rather, we interpret derivations. So the structure of the model
is this [38] 23] [45] 27, and many others]:
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syntax:  (Lexicon,F)
language: L = closure(Lexicon,F'), with derivations I"
(partial) semantics: []:T — M
synonymy: a =, b iff a,b € domain([-]) and [a] = [b].

w is compositional iff f(a1,...,an) =, f(b1,...,bn) whenever a; =, b; (all f e F)

In this chapter we provide a glimpse of compositional semantics of MG derivations, which will set the stage for
studying inferences that are sound or probable. The topics briefly reviewed in this chapter could easily fill a whole
book, and more! Not only do we need to find a way to frame “the whole of human knowledge,” as Tarski says, in
order to provide an account of how we express and reason about anything you could have a conversation about,
but really, getting this right is the whole point of trying to parse the syntax appropriately. In this section, we go
quickly but provide references to more thorough accounts.

16.1 A natural logic for deduction

Syntactic properties are. .. “local”. . . which is to say that they are constituted entirely

by what parts a representation has and how those parts are arranged. ..

But though it’s true that the syntax of a representation is a local property in that sense, it’s also
true that the syntax of a representation determines certain of its relations to other representations.
Syntaz, as it were, faces inward and outward at the same time. — Jerry Fodor |10, p.20]

I will use the term ‘natural logic’ to refer to theories about human-like inferences over the sorts of structures that
humans use in reasoning, including, among other things, the syntactic structures of spoken and gestured languages.

16.1.1 Order-based deduction

Keenan and Faltz [26] give the following examples of an important semantic relation that any linguistic theory
should provide an account of:

John is a linguist and Mary is a biologist walk and talk
John is a linguist walk
tall and handsome some but not all
handsome some
John is crying sing loudly
John is crying or laughing sing

The relation exemplified by all of these examples is clearly relevant to inference: the first example is an inference
of the usual sort, and the other examples can be embedded in certain sentential contexts to make inferences. So
what relation do we see in all these examples? It is the Boolean order <. In each of these examples, the denotation
of the expression above the line is less than or equal to (<) the denotation of the example below the line, where <
is the standard Boolean order. We will define this standard order < and then, later, show how it plays a role in
inference in different kinds of logic and then in a human-like language.

We assume that there are exactly two truth values {0, 1} and that they are ordered: 0 < 1. This famous ordered
set is sometimes called 2 or t or, in OCaml, bool. In OCaml, you can of course check that false <= true evaluates
to true, as expected! The <= function is polymorphic, as is the Boolean <. The extension of < to the whole infinite
range of Boolean types is easy to define:

(0) Where the truth values t = {0, 1}, and e is another type, that is, any nonempty set, TH(e, t) = closure({e,t}, F)
where F is the function mapping any sets s,t to the type s — t], which we interpret as they set of total
functions from s to t.

(1) The set of Boolean types is the smallest set such that t is Boolean, and if type « is Boolean, so is y — « for
any type y.

s=eand x =y, or
(2) For any Boolean type s in TH(e,t) and any =,y € s, * <, y iff ¢ s =t and either z =0 or y = 1, or
s=[t = u] and Vz € t,2(2) <, y(z)
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As will gradually become clear in the next sections, this is the relation we see in all the examples from Keenan and
Faltz mentioned above.

A logic usually has 3 parts: a syntax, a semantics, and an inference system defined on the syntax. Human
language can be regarded as a logic, where the inference system is the logic of discourse (or maybe, the various
kinds of logic of the various kinds of discourses). We practice with some simple systems first. I love these lines
that Alfred Tarski wrote in 1945 for the preface of his Introduction to Logic [42], when he was at the University of
California, Berkeley. He says that the first edition of the book was intended to present “a clear idea of that powerful
trend of contemporary thought which is concentrated about modern logic”:

This trend arose originally from the somewhat limited task of stabilizing the foundations of mathematics. In
its present phase, however, it has much wider aims. For it seeks to create a unified conceptual apparatus
which would supply a common basis for the whole of human knowledge. Furthermore, it tends to perfect and
sharpen the deductive method, which in some sciences is regarded as the sole means of establishing truths,
and indeed in every domain of intellectual activity is at least an indispensable auxiliary tool for deriving
conclusions from accepted assumptions.

Our goals here are similar, in the sense that we aim to say something about what we can express in our language.
But rather than providing a foundation for correct deductive inference, our goal is simply to model what deductive
and other inferential steps people make in ordinary language use, as for example in the understanding of normal
fluent speech.

16.1.2 Propositional calculus

Syntax. Consider again the formulation of the propositional calculus with a minimalist grammar (MG) containing
6 lexical items, from §?7, repeated here:

p:T q:T r::T

=TT

vi=T =TT [6]A:=T =TT 5:=T =TT
With this grammar, the string =pAq:T is structurally ambiguous, with these two derivations, in which — combines
with different elements:

—pAq:T
—pAq:T —u=T T pAq: T
Aq:=T T —p:T Aq:=T T p:T
Au=T =T T q:T ﬂ::=1{>T Ae=T =T T q::T

Specifying the lexical items by their number, the derivation trees have the lexical yields is 6241 and 4621, respectively.
In a more readable notation, the lexical yields are Aq—p and = Aqgp. Unlike the pronounced ‘string language’ of this
grammar, the yields of the derivations are unambiguous. As noted in §77, for any MG grammar, the yields of the
derivations form an unambiguous context free language, so we can give any MG semantics on derivations simply
by referring to these sequences. Notice that with this grammar, the sentence usually written p D q, that is, “p
implies q,” has the derivation D qp. This is because the “object” q of the operator D is given as the first argument,
even though it follows the “subject” p.

Semantics. Here we interpret derivation trees, but we use the abbreviated notations just introduced. For
example, = A qp is unambiguously (—((Aq)p)). Let’s write f : t for a function f of type t, and remember the
notational convention that a type x — y — z associates to the right, so it is x — (y — z). Then an interpretation
[-] of the propositional calculus given above is a function such that

i. [p] :t. Thatis, [p] € {0,1}.
ii. [q] : t. That is, [q] € {0,1}.
iii. [r]:t. That is, [r] € {0,1}.
1 ifx=0

iv. [-]:t— t, where [-]z =
v [ where [~z {O otherwise
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0 ifz=y=0

v. [V]:t =t —t, where [V]zy = ;
1 otherwise

1 fz=y=1
vi. [A]:t =t —t, where [V]zy = e .y
0 otherwise
0 ifz=1,y=0
vii. [D]:t —t —t, where [D]zy = e ) Y
1 otherwise

viii. [(x y)] = [x][y].- That is, the denotation of x is applied to the denotation of y.

Notice that the definition of [-] has 1 clause for each of the 7 lexical items, and then one recursive case. It is easy
to see that [A] < [V] and [D] < [V], but neither of [A] and [D] is less than or equal to the other. Applying this
definition to our examples above, when [p] = [q] = 0, we see that the two derivations have different truth values:

—-pAq:T [A]JO1=0
Aq:=T T —-p:T [A]O 1
P P
A=T =TT q:T =TT p=T Al 0 -1 0
-pAq:T [-]0=1
=TT pAq:T Il W
Aq:=T T p:T ﬂo\ 0
Ax=T =TT q:T A 0

16.1.3 Polarity and reasoning

Standard introductory presentations of deductive reasoning for the propositional calculus introduce rules like the
following. These rules are adapted from Parsons (2009), but note that we are stating them here over the prefix
notation that our derivations use, and so the arguments of O are in a nonstandard order: read D ¢p as “q, if p,”
which is equivalent to “if p then q.”

# modus ponens M modus tollens q conditional
Dy ol
P
9 neg — double neg - double neg
-p
AP AP BN R
p q APq
p q vVpq —q ! P
Vpq add Vpq add — mpt —q mpt

Rules of this sort have been very carefully studied! The natural, easy inferences from Keenan and Faltz that we
mentioned at the outset seem to overlap with these; there are details to spell out, but it looks like the first example
from Keenan and Faltz, on page[I78] is an instance of rule s, and some of their other examples look closely related.
However, these standard rules for the propositional calculus do not highlight the fundamental property that all the
Keenan and Faltz examples have in common. And some things that seem obvious, like Vp—p have slightly tricky
proofs, while other things that seem very non-obvious are not hard to show, like DD r D rp D r D qp, that is, (if
(if (if p then q) then r) then (if (if p then r) then r)). The standard inference rules for the propositional calculus
do not immediately give us a good model of the inferences that people find easy and natural (no surprise!). The
project of designing logics which are a better fit with reasoning that people find easy is sometimes called “natural
logic” [, 35, 37, 2, 14, [3, B31].

Can we use an order-based inference to show Vp—p? It is easy to see that, if p = 0 then p < Vp—p, and if p=0
then p < Vp—p, so < holds in all cases. Can we use this idea? First, we can notice that it is not always safe to
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replace a subformula by a greater one. For example, it’s not generally true that =p < —Vp-p! We say that the
occurrence of p in —p negative polarity, because — is a decreasing operator. We can define these notions this
way:

(3) Forany f € [T — Ulin TH(e,t), f is increasing, f1, iff whenever x <7y, fx <y fy, and f is decreasing,
[, iff whenever x <7y, fz >v fy.

Clearly, [-] is decreasing, since decreasing p in —p will increase [—p]. Notice that D is increasing in its first

argument (the argument usually written after the D symbol) and decreasing in its second argument. This follows

from the definition of [D]: decreasing the value of p in D gp will result in either no change or an increase in [D qp].
The other idea we need is the polarity of a (sub)derivation.

(4) =z has positive polarity or, more simply, is positive in z, z* in z.

7T

in x, or

z is positive in (xy), M in (xy) if < z* in y, and [x]1, or
z~ iny, and [x]{
z~ in X, or

z is negative in (xy), z~ in (xy), if { z~ in y, and [x]?, or
zT iny, and [x]{

Now we can label the subtrees of a derivation tree to indicate whether they appear in a positive () or negative (7)

context:
| Cora®7 (= )" oradd)

(Aq:=T T)* (-p:T)* (Aq:=T T)~ (p=T)~
(A==T =T T)* (q=T)* (=:=T T)* (p=T)~ (Az=T =T T)~ (quT)~

Or, for short:
(VEET) )T v Te) )T
As expected, the only negative polarities are in the scope of —, which differs in the 2 trees. Notice that when a
derivation gets merges with —, all its polarities flip!
Let’s write x[z] to mean that z is a particular occurrence of derivation z in derivation x. Now it is easy to show

that if an occurrence of z is positive in x, that is, x[zT], and if y < z, then x[z*] < x[yT]. And we have the reverse
situation when x[z~]. That is, we have these inference rules:

x[z7]

I y

xiv] PR

That is, when x occurs with positive polarity, it can be “increased”, preserving truth. And when x occurs with
negative polarity, it can be “decreased”, preserving truth. This is called polarity-based or monotonicity-based
reasoning.

16.1.4 Relation calculus

Unary relations of type e — t are usually called properties. And often when we speak of relations we mean binary
relations, things of type e — e — t. Much of our ordinary conversations involve unary and binary relations, and
simple relations among them. So it is natural to begin there, with the sorts of ‘syllogistic’ reasoning Aristotle
noticed.

In ‘generalized quantifier theory’ and standard ‘extensional’ approaches to semantics, we observe these two basic
things:

e Almost every semantic domain allows the Boolean operations: meet, join, complement.
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I paid every student and some teacher
DP combinations You should pay John or Mary
I paid not John but Mary

D combinations some but not all students are curious
A combinations I saw tall but not short giraffes
vP combinations I walk to work and take the bus to the beach

e In many contexts, simple determiners like every and some express relations between properties.
Treating properties like [student] as having the type e — t (or equivalently, as sets of things), we can treat
[every student] as mapping properties to truth values, (e — t) — t (or equivalently, as sets of properties).
Then the denotation of [every] has the type (e — t) — (e — t) — t (or equivalently, as sets of pairs of
properties.) In fact, simple most determiners don’t care what the properties are, but just about the size of
the overlaps between the properties; that is, an expression of the form Q 4B, like every student sings, can
be regarded as expressing a claim about the relation between the sizes of the sets |A — B| and |AN B|. The
proposition every student sings says that overlap of [student] and the complement of [sings] is empty. In

general,
some,B |[ANB| <0 every,B |[A—B|=0
no,B |[ANB| =0 at most N,B |[ANB| <N
Np,B=at least ;B |ANB| >N most,B |A—B|>|ANB|
more than NyB |[ANB| < N fewer than N,B |[ANB| >N
exactly N,B |[ANB| =N the NyB |A—B|=0&ANB|=N
all but N,B |A—-B|=N N out of MB |A—B|=|AnB/X~X
between N and 4B N < |ANB|< M every third,B |A—B|>2x|ANB|
finitely many,B |[AN B| > Rg infinitely many,B |ANB| >Ry

With relations and these (higher order) relations over relations, many simple propositions can be expressed. The
defintions above establish that some determiners are increasing or decreasing in their first or second arguments. For
example, [every] is decreasing in its first argument but increasing in its second argument, which means that in any
sentence, like Every student sings, you can decrease [student] to [Canadian student] or increase [sings] to [sings or
dances], preserving truth. Marking the polarities of expressions here (as detailed for example in [3]):

((Every™t student™)" sings™)™  ((Every™ student™)™ sings™)™

Every Canadian student sings  Every student sings or dances

The determiner no, on the other hand, is decreasing in both arguments, which means both arguments can be
decreased preserving truth:

(No*t student™ )™ sings™ (No*t student™ )™ sings™

No Canadian student sings No student sings and dances

Determiners like ezactly, on the other hand, are neither increasing nor decreasing, and so reasoning with them
sometimes requires more than just the recognition of < relations.
Reasoning with binary relations has a certain beauty too. Tarski SaysEI

... the calculus of relations has an intrinsic charm and beauty which makes it a source of intellectual delight
to all who become acquainted with it. [41] p.89]

Tarski also introduces it in his 1946 logic text for beginners [42], and he works on it with Givant in Set Theory
without Variables [43]. Using o to represent the composition of relations, and ~! to represent inverses as usual:

first order predicate calculus relation calculus
Vavy(R(z,y) D R(y, ) RCR™!
VavVyVz((R(x,y) A Ry, z)) D R(x, z)) RoRCR

VavVyVz((R(z,y) A R(z, 2)) D Jw(R(y,w) A R(z,w)) R 'oRCRoR™!

1This passage is noted by Marx [29] in a recent proposal about extensions of the relation calculus. Marx suggests that the general
preference for first order predicate calculus over the relation calculus may be analogous to the general preference for QWERTY keyboards
over alternatives. Our examples of relation calculus formulas, in the table just below, are also taken from this paper.
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16.1.5 First order and higher order predicate calculus

The standard first order predicate calculus adds variables to the relation calculus. A variable x is interpreted not
as naming anything in type e or type t or anything built from them, but something new. The denotation of a (first
order) variable x is usually taken to be a function from assignments to individuals, so an assignment is a function
of type G : Var — e, and for a first order variable x, [x] has type g — e. To make the rest of the semantics fit
together properly, there are a couple of strategies, but one is to let the type of [Px] be not t but g — t, for unary
predicate P. So then [P] has type (g — e) — (g — t). In short, we relativize all the standard denotation types to
assignments.

XXX MORE COMING XXX

16.1.6 English fragments

It is (not necessary but) common to assume that English expressions should be treated as having variable-like
elements too For example, in the sentence Mary knows who you like, the verb knows takes the CP complement
who you like, and the CP is usually regarded as who moving to the specifier position of you like. So really, that
phrase you like is naturally regarded as having a variable in it, you like x5, where the variable gets bound by who.
Let’s quickly review how this kind of semantics could be provided for little fragments of English like the ones we
formulated in §?7. (Cf. Kobele’s [2§].)

Following an idea from Kobele, let’s let the type of basic entities be not e but E, and the type of truth values
be not t but T. Then we can redefine e and t as types that are relativized to assignments, as suggested in §I6.1.5]
just above. But instead of introducing an infinite set of variables, let’s just treat the licensees of each grammar
as variables. In §7?7 and §77 we treat linguistic expressions that have moving elements as tuples of categorized
expressions, so we treat their semantic values as tuples as well. We use these basic types:

entities FE
truth values T ={0,1}
assignments G =F = F
individuals e =G— FE
0-ary relations, propositions ¢ =G>T

l-ary relations, properties e —t
2-ary relations, binary relations e —e —t

GQs (e 1) >t
Dets (e —»t)— (e —>1t)—t

basic 0-ary relations T
basic 1-ary relations FE — T
basic 2-ary relations E — E — T

Note that, using the definition of Boolean types given in (Il on page [[T8 above, every type listed above is Boolean
except F, G, e. The Boolean types all have a natural partial order <, with A,V,—.

(5) Semantic values f, g combine according to their types, as follows:

flg) iff:a—bandg:b
f+9=1<9g(f) otherwise,if g:a—band f:b
f Ag otherwise, if f, g have the same Boolean type

(6) For any g,h € G, let g =; h it Vj #£ 4, g(j) = h(j).

) if x =1
For any g € G,a € E, let gl#=9I(x) “ ne Z .
g(x) otherwise.

2This is standard practice in logic, and certainly it is coherent and well-understood, but some linguists have misgivings about it. See
for example [2].
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To reduce parens, as usual, the function space operator associates to the right
a—=b—oc=a—(b—c)

while application associates to the left

f(@)(b) = (f(a))(b)-

Let p assign basic denotations to determiners, nouns and verbs as follows:

Sue::D — sue: FE Joe:D +— joe: E

some:=ND — some: (E - T) — (1) every:=N D — every : (E — T) — (1)
car:Nw—car: F — T truck:N — truck : £ — T

passed::=D =D Vi passed : £ - F — T hit:=D =D Vi hit: F - F - T

where for any P,Rin £ — T,

some(P)(R)=1iff Ix € E, P(z) = R(z) =1
every(P)(R) =1iff Vx € E, if P(z) =1 then R(z) = 1.

These values of D(P)(R) for R € E — T are then extended to predicates R of higher arity by ‘lifting’ into
the higher types in the standard way [25, 21], so that, for example, for any a € E and R2€ E — E — T,

some(P)(R?)(a) =1 iff 3z € E, P(z) = R*(x)(a) =1
every(P)(R?)(a) = 1iff Vx € E, if P(z) = 1 then R*(x)(a) = 1.

The lift of a quantifier @ like some(P) can be computed by applying the combinator
AQP 7 AREZY NyE . Q( Nz R(z)(y)).

Letting (1) be the polymorphic type of the quantifiers obtained by iterated applications of this combinator,
our determiners have the type (E — 1) — (1).

In terms of ;1 we now define [-] as follows:

[[eml(ao, (bo,bl, . ,bk)]] = ([[ao]] + [[bo]], [[bl]], R [[bk]])

[em2((ag, a1, .. .,ak), (bo,b1,...,b1))] = ([ao] + [bo], [a1], - - - ; [ax], [b1], - - - » [b1])-
Recalling that em3 applies to a second argument ¢ - f6,11,...,1 where d # ¢, when the first feature of ¢ is
_fa
[em3((ag,...,ak), (bo,...,b1))] = ([ao](xyf), [ai], - - -, [ax], [bol, - - -, [b1])-

[iml(ao,...,ax)] = (Jai]As[ao], - - -, [ai—1], [ait], - - -, [ax])

Recalling that im2 applies to an argument s : +fv,a1,...,a;,-1,t : —f0,a;41,...,ar where § # €, when the
first feature of ¢ is —g,

[im2(ag, a1, . .., ax)] = ([ao]" 77, [a1]; - - -, [ax])

Examples.
Sue passed some car:C some(car) (passed)(Sue)
e:=V C  Sue passed some car:V = some(car) (passed)(Sue)
passed somecaﬂm::D SOW) Sue
passed:::m car:D passed some(car)

some::=N D  car:N some car
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some car that Sue passed:D some(car A \..passed(x;)(Sue))
some::=C D car that Sl‘le passed:C some car A \,.passed(x,)(Sue)
that Sue passed:+r C,car:-r passed(x;)(Sue),car
that::=V +r C Sue passed:V,car:-r = passed(x;)(Sue),car
passed::m::D paWr Sue
passed:::])/:l-)m -r passed car
/\
€:=ND-r car:N = car

16.1.7 Polarity sensitivity

Many human languages have “negative polarity items” and other sorts of “polarity sensitive” expressions. Haspelmath
[20] finds various sorts of sensitivity to negative elements in English, French, German, Russian, Latin, Hindi, Kazakh,
Yakut, Swahili, Hausa, Chinese, Quechua, and many other languages. In English, for example, we have:

* John visited anyone. (with no special stress on anyone)
John didn’t visit anyone.

* Mary visited any children

No one visited any children

* It’s true that Mary visited any children

)
)
)
)
)
16) It’s not true that Mary visited any children
) * Everyone thinks that Mary visited any children
) No one thinks that Mary visited any children

) * I know that John visited anyone.

)

I doubt that John visited anyone.

These examples might invite the idea that the various forms of any NP must have negative polarity. But that would
be a mistake, since (at least some) native English speakers accept:

(21) TIt’s not true that John visited anyone.

(22) It’s not true that noone visited any children.

(23) It’s not true that noone thinks that Mary visited any children
(24) It’s not true that I doubt that John visited anyone.

So what Ladusaw proposes is not that any NP needs to appear in a negative polarity position, but rather that it
needs to appear in the scope of a decreasing operator, or equivalently, that it needs to be contained in a phrase
that has negative polarity. Whether the position of any NP itself has negative polarity is irrelevant. Ladusaw’s
proposal fits the data above, but the conditions on any NP are actually quite tricky [I5]. Even Ladusaw’s proposal
is disappointing for the logician, and the tricky cases even more so, since it means that the syntax is not really
marking the negative polarity positions. It comes very close, though, in many simpler sentences with one negation
and limited embedding.

16.1.8 Human polarity reasoning

The examples of polarity-based inferences given in the introduction are rather simple, but they extend to more
complex cases. Consider this argument from Sommers [39] and Purdy [35]:

Some horses are faster than some dogs. All dogs are faster than some men. (Implicit assumption: faster and
its converse are transitive.) Therefore, some horses are faster than some men.

Extending our MG to get sentences like these, we expect this reasoning could be formalized roughly like this:
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i. (faster (some dogs)) (some horses)

ii. (faster (some men)) (all dogs)

Note that (faster (some men)) denotes things that are faster than some men, so, by
ii and polarity:

iii. all (faster (some men)) dogs

So by i, iii and polarity:

iv. (faster (some (faster (some men)))) (some horses)
So by the transitivity of faster:

v. (faster (some men)) (some horses)

Yaroslav Fyodorov describes a polarity-based proof construction tool in his thesis EE]E

Crmmmm e T e m— e, R 5 .

I:g wm‘&'m _____ }‘ttp /fwee, ca, technion ac. :lfn?a-rnsl-wa’utﬁpruwr htnl j fl’ﬁhlm : al m )
Natural Logic Inference System — Order Calculus Prover
Lexdeal "I.Iﬂ = moed 1 1 .c(aelfy < 3l _least and al.__must.
St man < parson M al_least one < some
Statements
Famovs ardar mu:mnl| sorme < af_least one
- |a<sme
.wmp <d ull.man n
A4 Premise|
o L R — 4
Remave Premiss
Concludon:  |Ftop ¢ & parson maved Sut Conclugen)
Cutput Style:  Prawtz —'l Recluce Frooft  Yes I Transdtivity: Al = [ IFrembsea; Aslaaves
_PtcmaJ
It Arsa wreop < |l girl ran
{ OCHome | Lexwon | Eismples | Halp ]

I ds awma

3The pictured theorem prover which was available at http://www.cs.technion.ac.il/~yaroslav/ is no longer available.
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Considering the reasoning about the fast horses, notice that although we may be able to capture that argument in
just a few steps, it takes some thought. The conclusion is not completely obvious (unless, perhaps, you have been
practicing with puzzles like this!). So a proof-stepper is often needed if the reasoning involves more than a few

steps.

Minsky makes a natural suggestion about commonsense reasoning [30, pp193,189]:

As scientists we like to make our theories as delicate and fragile as possible. We like to arrange things so
that if the slightest thing goes wrong, everything will collapse at oncel. ..

Here's one way to contrast logical reasoning and ordinary thinking. Both build chainlike connections between
ideas. ..

\
/

>

-

Commonsense Reasoning

=

% 2
o 7
i(

Mathematical Logic

Logic demands just one support for every link, a single, flawless deduction. Common sense asks, at every
step, if all of what we've found so far is in accord with everyday experience. No sensible person ever trusts
a long, thin chain of reasoning. In real life, when we listen to an argument, we do not merely check each
separate step; we look to see if what has been described so far seems plausible. We look for other evidence
beyond the reasons in that argument.



188 CHAPTER 16. ABOVE SYNTAX: NATURAL LOGIC, DISCOURSE DYNAMICS

16.2 ‘Bridging inference’: probabilities, Bayesian nets, prototypes, etc.

Setting aside whether our inferences are shallow, the inferences made in conversation typically involve non-deductive
reasoning, ‘guesswork’. In effect, when trying to understand a discourse, we ask ourselves, why would the speaker
be saying this? The answers we find do not follow deductively from premises we are certain about, but rather are
tentative and depend on contextual support. Using the terms of the quote on page [I78 at the beginning of section
6.1t the crucial inferences in understanding typical conversation are not local.

In the class discussion of deductive reasoning, I uttered the sentence from Keenan& Faltz’85 several times:

John is a linguist.

In some cases I was naming the sentence, so what I really said on those occasions is better given by the name, the
DP used to mention the sentence,

‘John is a linguist’

And on other occasions, I used the sentence but was ‘speaking hypothetically’. It was obvious to everyone that I
was never asserting that anyone was a linguist. How was this so obvious?

XXX MORE COMING XXX

16.2.1 Inference to best explanation as probabilistic reasoning
XXX MORE COMING XXX

Probabilistic reasoning is unlike deductive reasoning in some fundamental respects. In particular, deductive
consequence is transitive, but if p probabilistically confirms ¢ and ¢ probabilistically confirms 7, it does not follow
that p probabilistically confirms r. It is worth exploring such differences a little bit before we develop the probabilistic
alternative.

XXX MORE COMING XXX
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16.2.2 Bayesian nets for probabilistic reasoning

One idea is to limit the range of probabilistic dependencies that we keep track of. This is the essential idea behind
Minksy’s “scripts” and “frames,” but I think we find a much more robust and flexible development in graphical,
network models of belief. Suppose for example that all the propositions whose truth is supported by p are on a
branch of a tree dominated by p. Then, at least in certain special conditions, it is possible to quickly propagate
evidential adjustments through all the relevant propositions. This is the basic idea behind Bayesian nets [34], [6].

Box 1. Bayes nets, the Markov assumption and conditional

e S Box 3. Comparing Bayesian learning and constraint-based

learning of Bayes nets

®
/ \ True unknown structure @ —"®
&

TRENDS in Cognitfve Sciences

TRENDS in Cognitive Sciences

The graph above represents the claim that smoking is a cause of
yellowed teeth and lung cancer, but that lung cancer does not cause
yellowed teeth and yellowed teeth do not cause lung cancer. It also
represents claims about the conditional probability relations among
the three variables: for all values of ¥, S and L (for example, all
combinations of present or absent)

Bayesian learning

(1) Prior probability distribution Pr{G; 8) over all directed acyclic
graphs G and probability distributions 8 on the variables
{vertices in G), with a Markov factorization for G.

Pr(Y,S,L) = Pr(YIL, $)-Pr(LIS)-Pr(8) = Pr(YIS)-Pr(LIS)-Pr(S) {2) Likelihood function L{D; G, 8) giving the probability of the
observations D conditional on the truth of G, 8.

(3) Computethe probability of any graph G conditional on the data
by using Bayes Theorem and integrating over 6

where Pr{Y = presentlL = absent, S = present), for example, rep-
resents the probability of yellowed teeth among smokers without
lung cancer. The firstequality is necessarily true, but the second is an

assumption, the Markov factorization, which says that the joint [ PH(G: 0)L(D; G, 0)da

distribution of all variables is equal to a product of the conditional Pr(GID) = Py

distributions of each variable on its parents in the graph. The Markoy

factorization is equivalent, in this example, to the claim that {4)  Find the graphs G such that for all other graphs G*, PriGID} =
Pr{YIS,L) = Pr{YIS). PriG*ID)

Figures from Glymour’s 2003 survey article [I7} [16]

Note that these nets limit the inferential dependencies with a graph that is assumed to be acyclic, which may be
realistic when the dependencies are “causal” and not self-reinforcing, but otherwise seems unrealistic. (Cf. Fodor’s
critique of these approaches in [I1, §4].) Nevertheless, it may be a useful starting point.
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16.3 Discourse dynamics

40, 22| 44] 48]
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Chapter 17 Around syntax: Selecting the best parse

A wealth of experimental findings document that the structural and semantic analyses that com-
prehenders assign at the point of ambiguity, mid-sentence, are determined by these lexical factors,
including the probability that a given verb takes particular complements, as well as the semantic fit
of constituents into the intended roles assigned by the verb ... The probabilistic recovery of struc-
ture is sensitive to other contingencies as well. In particular, the referential implications of these
representations are computed in real-time and serve as an important top-down constraint ... In
a similar interactive fashion, prosodic evidence is also weighed by the listener in real time... The
picture emerging from these data is one in which the recognition of the word within a sentence
automatically triggers linguistic representations at multiple levels. This triggering is probabilistic in
nature: Using all evidence in hand, a listener is engaged in a kind of guessing-game in which the
linguistic procedures that gave rise to the utterance are recovered. Referential implications are also
computed and, when possible, used to constrain the listener’s syntactic hypotheses. Finally, local
ambiguity is the norm in real-time language comprehension. It is close to impossible to find an
utterance of even 10 words in length, and of modest conceptual content, that cannot be interpreted
in more than one way at some point during its hearing. Computational linguists recognized this as
soon as they started to implement parsers designed to handle natural text ... The overall implica-
tion is that as a constant matter in the course of understanding, the listener must rapidly evaluate
competing analyses at one or more levels of representation, choosing among them as they arise, in
response to differences in interpretive accessibility at each such level. the brain processes it. — John
C. Trueswell & Lila R. Gleitman

17.1 Discourse cues for parse selection and understanding

13l
I
5]

17.2 Prosody and other phonetic cues

We advocate an approach to prosody that tries to reconcile the existence of grammatical constraints
will the enormous wvariability in pronunciations of a sentence. .. ... the listener assumes that a
speaker using short prosodic phrases (lots of prosodic boundaries) will not omit a prosodic boundary
at the largest syntactic break in the utterance for no reason. .. Prosody is therefore central to under-
standing spoken language, and we speculate that it might supply the basic skeleton that allows us to
hold an auditory linguistic sequence in memory while the brain processes it.

— Lyn Frazier, Katy Carlson & Charles Clifton Jr. |2]

17.3 Grammatical illusions

4]
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Chapter 18 Before syntax: Learning the language

So is the calculus something that we adopt arbitrarily?
No more so than the fear of fire, or the fear of a raging man coming at us.
— Ludwig Wittgenstein [4 I.#68]

18.1 Exact learning
18.2 Probabilistic learning
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Chapter 19 Summary and key open problems

The most important question for a scientist is: what are the key open problems? All the work in these notes aims
to get us to the next important questions. The trick to making progress in understanding things is to find aspects
of the domain which are not just significant but ones that are likely to yield to study. The latter desiderata is very
much harder than the former: many questions we are interested in are ones that we do not know how to gain insight
into. So it is clear that this section reflects the personal perspective of the author even more than the preceding
material does. Let’s try to briefly summarize the main results of all the work reviewed earlier, with the goal of
showing how they bring us to the next important, feasible questions.

19.1 The situation in syntax and phonology

One striking feature of these lecture notes is that no grammar of any particular language is developed to any extent.
Before explaining why that might be the case, let’s consider a striking feature of the field: It is not easy to find
a significant body of material that is accepted by all or even most reasonable and well-informed linguists. Several
handbooks of linguistics have been published recently, and I cannot help but be appalled at how insubstantial
the chapters on syntax are. There are also recent handbooks devoted entirely to syntax, and large multi-volume
surveys. These present a great wealth of information about a rather wide range of languages, but it is hard to find
in them a substantial unifying vision of what human syntax is. The lack of consensus is widely noted, and leads
some to despair about the field, but that reaction is in appropriate! In a recent paper, Steedman and Baldridge’11
ask “Why are there so many theories of grammar around these days?”’ and immediately answer: “Sometimes the
similarities are disguised by the level of detail at which the grammar is presented.” That leaves us the problem of
discerning common assumptions lurking behind irrelevant notational details, and this requires appropriately careful
comparison of theoretical mechanisms. This is more abstract than is usually required for good linguistic work, and
so the comparisons remain largely undone, except in the slightly more abstract and more formal kind of work that
we see, for example, in the traditions of categorial grammar and tree adjoining grammar. That work has revealed
some substantial points of consensus. Joshi’s “mildly context sensitive hypothesis”, which we have discussed, is an
attempt to formulate a substantial claim that is relatively theory neutral. Similarly Kaplan and Kay’94, mention as
a great virtue of their finite state perspective on phonology that it can remain constant “even under radical changes
in the theory.”

This is the rational strategy, I think: use formal representations with well-understood connections to a reasonable
range of mainstream theories.

with commitments that are either explicitly acknowledged as preliminary simplifications or

We can consider proposals that apply to a wide range of grammars, a range that can reasonably be assumed to
include the kinds of grammars realized in human speakers. This project rests on work on the details, but abstracts
away from detailed to proposals to make much weaker, much more plausible proposals.

XXXX

My favorite example of getting lost in the details is the emphasis on traces in assessments of Chomskian syntax.
XXX

19.2 The situation in parsing
Parsing as possible: [

Best idea: Some version of GLC MGC
Search: Adaptive as Hale suggests

197



198 REFERENCES

19.3 The situation above and below parsing: Phonetics and discourse

While phonology looks to be of a piece with syntax, phonetics is different.
Similarly, discourse.. XX

19.4 The situation around parsing: Defining ‘best parse’
19.5 The situation before parsing: acquisition
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