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Lecture plan
• Representing word meaning
• tf-idf
• Word2Vec: skip-gram
• Evaluating word embeddings
• Short break (15 mins)
• Hands-on exercises

Final exam
• 6:30-8:30 pm, Dec 9, LI-G600
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Representing name as features

x	=	[0.442,-0.562,2.795,2.087]
W1	=	[[1,3,2,4],

[2,1,4,3]]
W2	=	[-1,2]
b1	=	[1,-1],	b2	=	2
z1	=	W1x+b1
a1	=	ReLU(z1)	=	max(z1,0)
z2	=	W2a1+b2
a2	=	𝜎(z2)=1/(1+e-z2)

W2

W1 b1

z2 = 𝑊2𝑎1 + 𝑏2
𝑎2 = 𝜎(𝑧2)

a1 = ReLu(𝑧1)
𝑧1 = 𝑊1𝑥 + 𝑏1

b2

x
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Word meaning: attributes

Word Vision Bright Dark Color Pattern Large Small

ant 3.5484 0.3548 3.5806 3.9355 1.9355 0.0968 5.871

bicycle 5.3 1.1667 0.6333 1 2.1667 1.7 1.2667

farm 5.7097 1.1935 0.5161 1.7419 1.8065 5.0645 0.129

farmer 4.1786 0.5 0.3214 0.4286 0.6071 1.4286 0.6786

green 4.2963 1.7778 1 5.9259 1.5926 0.1852 0.1111

red 5 3.2857 1.25 6 1.4643 0.1071 0.0357

rocket 5.5 2.9333 0.7333 1.8667 1.9 5.6 0.2333

trust 0.3793 0.1379 0.0345 0.3103 0.2069 0.3103 0.069

Binder et al. (2016): 65 dimensions, scale: 0-6
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Word meaning: co-occurrence
Wittgenstein (1953): The meaning of a word is its use
in the language

Harris (1954): If A and B have almost identical
environments we say that they are synonyms.

Firth (1957): A word is characterized by the company it
keeps.
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Example: ongchoi
Suppose you see these sentences:

ongchoi is delicious sautéed with garlic.
ongchoi is superb over rice
ongchoi leaves with salty sauces

And you've also seen these:
…spinach sautéed with garlic over rice
chard stems and leaves are delicious
collard greens and other salty leafy greens

Conclusion:
ongchoi is a leafy green like spinach, chard, or collard greens

We could conclude this based on words like "leaves" and
"delicious" and "sauteed"
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Defining meaning by linguistic distribution
Two words are similar in meaning if their contexts are similar

6.3 • WORDS AND VECTORS 9

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector
dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.
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the number of times the row (target) word and the column (context) word co-occur
in some context in some training corpus. The context could be the document, in
which case the cell represents the number of times the two words appear in the same
document. It is most common, however, to use smaller contexts, generally a win-
dow around the word, for example of 4 words to the left and 4 words to the right,
in which case the cell represents the number of times (in some training corpus) the
column word occurs in such a ±4 word window around the row word. For example
here is one example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.
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Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.
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Word as vector in space

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25

strawberry 0 ... 0 0 1 60 19
digital 0 ... 1670 1683 85 5 4

information 0 ... 3325 3982 378 5 13
Figure 6.5 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.
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Figure 6.6 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the
training corpus; keeping words after about the most frequent 50,000 or so is gener-
ally not helpful). But of course since most of these numbers are zero these are sparse
vector representations, and there are efficient algorithms for storing and computing
with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss the tf-idf method of weighting
cells.

6.4 Cosine for measuring similarity

To define similarity between two target words v and w, we need a measure for taking
two such vectors and giving a measure of vector similarity. By far the most common
similarity metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.
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Word embeddings
A word vector is called an "embedding" because it's embedded
into a space. à Every modern NLP algorithm uses embeddings as
the representation of word meaning

Why embeddings?

Can generalize to
similar but unseen
words!

ongchoi and spinach
will have similar
embeddings
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tf-idf
term frequency-inverse document frequency: Words are 
represented by (a simple function of) the counts of nearby words.
term-context matrix: context window = 4

aardvark ... computer data result pie sugar ...

cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...

digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...

good 1085 … 4300 5638 5283 4828 3968 …
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Term frequency (tf)
tft,d= count(t,d): the frequency of word t in document d

Instead of using raw count, we squash a bit using log10
tft,d= log10(count(t,d)+1) 

aardvark ... computer data result pie sugar ...

cherry 0 ... 0.48 0.95 1 2.65 1.41 ...

strawberry 0 ... 0 0 0.3 1.79 1.30 ...

digital 0 ... 3.22 3.23 1.93 0.78 0.70 ...

information 0 ... 3.52 3.60 2.58 0.78 1.15 ...

good 3.04 … 3.63 3.75 3.72 3.68 3.60 …
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Inverse document frequency (idf)
dft: the number of documents t occurs in.

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

N is the total number of documents 
in the collection

df idf

cherry 2800 2.55

strawberry 3005 2.52

digital 7603 2.12

information 14378 1.84

good 275423 0.56

N=1000000

good co-occurs with many words, so 
its idf will be small
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Final tf-idf weighted value for a word

6.5 • TF-IDF: WEIGHING TERMS IN THE VECTOR 13

Because of the large number of documents in many collections, this measure
too is usually squashed with a log function. The resulting definition for inverse
document frequency (idf) is thus

idft = log10

✓
N
dft

◆
(6.13)

Here are some idf values for some words in the Shakespeare corpus, ranging from
extremely informative words which occur in only one play like Romeo, to those that
occur in a few like salad or Falstaff, to those which are very common like fool or so
common as to be completely non-discriminative since they occur in all 37 plays like
good or sweet.3

Word df idf
Romeo 1 1.57
salad 2 1.27
Falstaff 4 0.967
forest 12 0.489
battle 21 0.246
wit 34 0.037
fool 36 0.012
good 37 0
sweet 37 0

The tf-idf weighted value wt,d for word t in document d thus combines termtf-idf
frequency tft,d (defined either by Eq. 6.11 or by Eq. 6.12) with idf from Eq. 6.13:

wt,d = tft,d ⇥ idft (6.14)

Fig. 6.9 applies tf-idf weighting to the Shakespeare term-document matrix in Fig. 6.2,
using the tf equation Eq. 6.12. Note that the tf-idf values for the dimension corre-
sponding to the word good have now all become 0; since this word appears in every
document, the tf-idf algorithm leads it to be ignored. Similarly, the word fool, which
appears in 36 out of the 37 plays, has a much lower weight.

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

Figure 6.9 A tf-idf weighted term-document matrix for four words in four Shakespeare
plays, using the counts in Fig. 6.2. For example the 0.049 value for wit in As You Like It is
the product of tf = log10(20+ 1) = 1.322 and idf = .037. Note that the idf weighting has
eliminated the importance of the ubiquitous word good and vastly reduced the impact of the
almost-ubiquitous word fool.

The tf-idf weighting is the way for weighting co-occurrence matrices in infor-
mation retrieval, but also plays a role in many other aspects of natural language
processing. It’s also a great baseline, the simple thing to try first. We’ll look at other
weightings like PPMI (Positive Pointwise Mutual Information) in Section 6.6.

3 Sweet was one of Shakespeare’s favorite adjectives, a fact probably related to the increased use of
sugar in European recipes around the turn of the 16th century (Jurafsky, 2014, p. 175).

aardvark ... computer data result pie sugar ...

cherry 0 ... 1.22 2.42 2.55 6.76 3.60 ...

strawberry 0 ... 0 0 0.76 4.51 3.28 ...

digital 0 ... 6.83 6.85 4.09 1.65 1.48 ...

information 0 ... 6.48 6.62 4.75 1.44 2.12 ...

good 1.70 … 2.03 2.1 2.08 2.06 2.02 …
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Computing word similarity: Cosine

The dot product tends to be high when the two vectors have large 
values in the same dimensions
à a useful similarity metric between vectors

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Normalized by the 
length of the vector

-1: vectors point in opposite directions: dissimilar
+1:  vectors point in same directions: similar
0: vectors are orthogonal
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Cosine similarity: Example

pie data computer

cherry 6.76 2.42 1.22

digital 1.65 6.85 6.83

information 1.44 6.62 6.48

cos
�⃗� & 𝑤
�⃗� 𝑤

=
�⃗�
�⃗�
&
𝑤
𝑤

=
∑!"#$ 𝑣!𝑤!

∑!"#$ 𝑣!% ∑!"#$ 𝑤!%

cos 𝑐ℎ𝑒𝑟𝑟𝑦, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
6.76 ∗ 1.44 + 2.42 ∗ 6.62 + 1.22 ∗ 6.48

6.76% + 2.42% + 1.22% 1.44% + 6.62% + 6.48%
= 0.49

cos 𝑑𝑖𝑔𝑖𝑡𝑎𝑙, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
1.65 ∗ 1.44 + 6.85 ∗ 6.62 + 6.83 ∗ 6.48

1.65% + 6.85% + 6.83% 1.44% + 6.62% + 6.48%
= 0.99

semantically-
related words 
have higher
cosine similarity
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Sparse vs dense vectors

tf-idf vectors are
long (length |V|= 100000)
sparse (most elements are zero)

Alternative: learn vectors which are
short (length 50-1000)
dense (most elements are non-zero)

à Short vectors may be easier to use as features in 
machine learning (fewer weights to tune)

Word2Vec (Mikolov et al., 2013): simple static embeddings 
https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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Word2Vec
• Popular embedding method
• Very fast to train
• Code available on the web

skip-gram with negative sampling (SGNS)
Idea: Instead of counting how often each word w occurs near "apricot"

• Train a classifier on a binary prediction task:
• Is w likely to show up near "apricot"?

à take the learned classifier weights as the word embeddings

Big idea:  self-supervision
• A word c that occurs near apricot in the corpus as the gold "correct 

answer" for supervised learning
• No need for human labels
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Predicting if word c is a "neighbor"
1. Treat the target word t and a neighboring context 

word c as positive examples.
2. Randomly sample other words in the lexicon to get 

negative examples
3. Use logistic regression to train a classifier to 

distinguish those two cases
4. Use the learned weights as the embeddings
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Skip-gram training
Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of  apricot jam,   a]  pinch…
c1        c2 c3     c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
Assigns each pair a probability:

P(+|w, c): c is in the context of word w
P(−|w, c) = 1 − P(+|w, c) 
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Computing probability 6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)

In summary, skip-gram trains a probabilistic classifier that, given a test target word
w and its context window of L words c1:L, assigns a probability based on how similar
this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.
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Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter q that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

Fig. 6.13 shows the intuition of the parameters we’ll need. Skip-gram actually
stores two embeddings for each word, one for the word as a target, and one for the

6.8 • WORD2VEC 19

We model the probability that word c is a real context word for target word w as:

P(+|w,c) = s(c ·w) = 1
1+ exp(�c ·w) (6.28)

The sigmoid function returns a number between 0 and 1, but to make it a probability
we’ll also need the total probability of the two possible events (c is a context word,
and c isn’t a context word) to sum to 1. We thus estimate the probability that word c
is not a real context word for w as:

P(�|w,c) = 1�P(+|w,c)

= s(�c ·w) = 1
1+ exp(c ·w) (6.29)

Equation 6.28 gives us the probability for one word, but there are many context
words in the window. Skip-gram makes the simplifying assumption that all context
words are independent, allowing us to just multiply their probabilities:

P(+|w,c1:L) =
LY

i=1

s(�ci ·w) (6.30)

logP(+|w,c1:L) =
LX

i=1

logs(�ci ·w) (6.31)
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Multiple context words:
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Example
…lemon, a [tablespoon of  apricot jam,   a]  pinch…

c1        c2 c3     c4
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this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)
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Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
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For each positive 
example we’ll 
take k negative 
examples
(here, k=2)
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Learn the vectors
• Given the set of positive and negative training
instances, and an initial set of embedding vectors
• The goal of learning is to adjust those word vectors
such that we:
• Maximize the similarity of the target word, context
word pairs (w , cpos) drawn from the positive data
• Minimize the similarity of the (w , cneg) pairs drawn
from the negative data
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Loss function
Maximize the similarity of the target with the actual context words, 
and minimize the similarity of the target with the k negative sampled 
non-neighbor words. 
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Given the set of positive and negative training instances, and an initial set of embed-
dings, the goal of the learning algorithm is to adjust those embeddings to

• Maximize the similarity of the target word, context word pairs (w,cpos) drawn
from the positive examples

• Minimize the similarity of the (w,cneg) pairs from the negative examples.
If we consider one word/context pair (w,cpos) with its k noise words cneg1 ...cnegk ,

we can express these two goals as the following loss function L to be minimized
(hence the �); here the first term expresses that we want the classifier to assign the
real context word cpos a high probability of being a neighbor, and the second term
expresses that we want to assign each of the noise words cnegi a high probability of
being a non-neighbor, all multiplied because we assume independence:

LCE = � log

"
P(+|w,cpos)

kY

i=1

P(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

logP(�|w,cnegi)

#

= �
"

logP(+|w,cpos)+
kX

i=1

log
�
1�P(+|w,cnegi)

�
#

= �
"

logs(cpos ·w)+
kX

i=1

logs(�cnegi ·w)
#

(6.34)

That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
shows the intuition of one step of learning.
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Figure 6.14 Intuition of one step of gradient descent. The skip-gram model tries to shift
embeddings so the target embeddings (here for apricot) are closer to (have a higher dot prod-
uct with) context embeddings for nearby words (here jam) and further from (lower dot product
with) context embeddings for noise words that don’t occur nearby (here Tolstoy and matrix).

To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the
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Learning the classifier

How to learn?
Gradient descent!

We’ll adjust the word weights 
to
• make the positive pairs 

more likely 
• and the negative pairs less 

likely, 
• over the entire training set.
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The derivatives of the loss function
22 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·w)�1]w (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·w)]w (6.39)

wt+1 = wt �h [s(cpos ·wt)�1]cpos +
kX

i=1

[s(cnegi ·w
t)]cnegi (6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.
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That is, we want to maximize the dot product of the word with the actual context
words, and minimize the dot products of the word with the k negative sampled non-
neighbor words.

We minimize this loss function using stochastic gradient descent. Fig. 6.14
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To get the gradient, we need to take the derivative of Eq. 6.34 with respect to
the different embeddings. It turns out the derivatives are the following (we leave the
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Update weights
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proof as an exercise at the end of the chapter):

∂LCE

∂cpos
= [s(cpos ·w)�1]w (6.35)

∂LCE

∂cneg
= [s(cneg ·w)]w (6.36)

∂LCE

∂w
= [s(cpos ·w)�1]cpos +

kX

i=1

[s(cnegi ·w)]cnegi (6.37)

The update equations going from time step t to t + 1 in stochastic gradient descent
are thus:

ct+1
pos = ct

pos �h [s(ct
pos ·wt)�1]wt (6.38)

ct+1
neg = ct

neg �h [s(ct
neg ·wt)]wt (6.39)

wt+1 = wt �h

"
[s(cpos ·wt)�1]cpos +

kX

i=1

[s(cnegi ·w
t)]cnegi

#
(6.40)

Just as in logistic regression, then, the learning algorithm starts with randomly ini-
tialized W and C matrices, and then walks through the training corpus using gradient
descent to move W and C so as to maximize the objective in Eq. 6.34 by making the
updates in (Eq. 6.39)-(Eq. 6.40).

Recall that the skip-gram model learns two separate embeddings for each word i:
the target embedding wi and the context embedding ci, stored in two matrices, thetarget

embedding
context

embedding target matrix W and the context matrix C. It’s common to just add them together,
representing word i with the vector wi + ci. Alternatively we can throw away the C
matrix and just represent each word i by the vector wi.

As with the simple count-based methods like tf-idf, the context window size L
affects the performance of skip-gram embeddings, and experiments often tune the
parameter L on a devset.

6.8.3 Other kinds of static embeddings
There are many kinds of static embeddings. An extension of word2vec, fasttextfasttext
(Bojanowski et al., 2017), deals with unknown words and sparsity in languages with
rich morphology, by using subword models. Each word in fasttext is represented as
itself plus a bag of constituent n-grams, with special boundary symbols < and >
added to each word. For example, with n = 3 the word where would be represented
by the sequence <where> plus the character n-grams:

<wh, whe, her, ere, re>

Then a skipgram embedding is learned for each constituent n-gram, and the word
where is represented by the sum of all of the embeddings of its constituent n-grams.
A fasttext open-source library, including pretrained embeddings for 157 languages,
is available at https://fasttext.cc.

The most widely used static embedding model besides word2vec is GloVe (Pen-
nington et al., 2014), short for Global Vectors, because the model is based on cap-
turing global corpus statistics. GloVe is based on ratios of probabilities from the
word-word co-occurrence matrix, combining the intuitions of count-based models
like PPMI while also capturing the linear structures used by methods like word2vec.

Start with randomly initialized C and W matrices, then 
incrementally do updates
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Get the embeddings
Skip-gram learns two sets of embeddings

Target embeddings matrix W
Context embedding matrix C 

It's common to just add them together, representing 
word i as the vector wi+ ci
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Evaluating word embeddings
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Against human judgement

word1 word2 similarity

vanish disappear 9.8 
behave obey 7.3 
belief impression 5.95 
muscle bone 3.65 
modest flexible 0.98 
hole agreement 0.3 

SimLex-999: Human rating on the similarity between 1000 pairs of 
words (scale: 0-10)

Calculate the 
correlation between 
the cosines of the 
word embeddings 
and the simlex-999 
values
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Against human brain data?
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Against human brain data?
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To do
• Optional reading: SLP Ch6
• Do HW8


