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Lecture plan
• Classification with FFNN
• Language model with FFNN
• PyTorch implementation
• Short break (15 mins)
• Hands-on exercises
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Use cases for feedforward neural networks

1. Text classification
2. Language modeling

State-of-the-art systems use more powerful neural architectures, 
but simple models are useful to consider!

W2

W1 b1

z2 = 𝑊2𝑎1 + 𝑏2
𝑎2 = 𝜎(𝑧2)

a1 = ReLu(𝑧1)
𝑧1 = 𝑊1𝑥 + 𝑏1

b2

x
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Replacing the bias unit
Let's switch to a notation without the bias unit b
Add a dummy node a0=1 to each layer, its weight w0 will be the bias
So input layer a[0]

0=1, a[1]
0=1 , a[2]

0=1,…
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Sentiment analysis
Using hand-built features

5.1 • CLASSIFICATION: THE SIGMOID 5

 It's hokey . There are virtually no surprises , and the writing is second-rate . 
So why was it so enjoyable  ? For one thing , the cast is
 great . Another nice touch is the music . I was overcome with the urge to get off
 the couch and start dancing .  It sucked me in , and it'll do the same to you  .

x1=3 x6=4.19

x3=1

x4=3x5=0

x2=2

Figure 5.2 A sample mini test document showing the extracted features in the vector x.

Given these 6 features and the input review x, P(+|x) and P(�|x) can be com-
puted using Eq. 5.5:

p(+|x) = P(Y = 1|x) = s(w · x+b)
= s([2.5,�5.0,�1.2,0.5,2.0,0.7] · [3,2,1,3,0,4.19]+0.1)
= s(.833)
= 0.70 (5.6)

p(�|x) = P(Y = 0|x) = 1�s(w · x+b)
= 0.30

Logistic regression is commonly applied to all sorts of NLP tasks, and any property
of the input can be a feature. Consider the task of period disambiguation: deciding
if a period is the end of a sentence or part of a word, by classifying each period
into one of two classes EOS (end-of-sentence) and not-EOS. We might use features
like x1 below expressing that the current word is lower case and the class is EOS
(perhaps with a positive weight), or that the current word is in our abbreviations
dictionary (“Prof.”) and the class is EOS (perhaps with a negative weight). A feature
can also express a quite complex combination of properties. For example a period
following an upper case word is likely to be an EOS, but if the word itself is St. and
the previous word is capitalized, then the period is likely part of a shortening of the
word street.

x1 =

⇢
1 if “Case(wi) = Lower”
0 otherwise

x2 =

⇢
1 if “wi 2 AcronymDict”
0 otherwise

x3 =

⇢
1 if “wi = St. & Case(wi�1) = Cap”
0 otherwise

Designing features: Features are generally designed by examining the training
set with an eye to linguistic intuitions and the linguistic literature on the domain. A
careful error analysis on the training set or devset of an early version of a system
often provides insights into features.

For some tasks it is especially helpful to build complex features that are combi-
nations of more primitive features. We saw such a feature for period disambiguation
above, where a period on the word St. was less likely to be the end of the sentence
if the previous word was capitalized. For logistic regression and naive Bayes these
combination features or feature interactions have to be designed by hand.feature

interactions

4 CHAPTER 5 • LOGISTIC REGRESSION

nearly linear around 0 but has a sharp slope toward the ends, it tends to squash outlier
values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:

P(y = 1) = s(w · x+b)

=
1

1+ e�(w·x+b)

P(y = 0) = 1�s(w · x+b)

= 1� 1
1+ e�(w·x+b)

=
e�(w·x+b)

1+ e�(w·x+b) (5.5)

Now we have an algorithm that given an instance x computes the probability P(y =
1|x). How do we make a decision? For a test instance x, we say yes if the probability
P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision

boundary

ŷ =

⇢
1 if P(y = 1|x)> 0.5
0 otherwise

5.1.1 Example: sentiment classification
Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
in a sample mini test document.

Var Definition Value in Fig. 5.2
x1 count(positive lexicon) 2 doc) 3
x2 count(negative lexicon) 2 doc) 2

x3

⇢
1 if “no” 2 doc
0 otherwise 1

x4 count(1st and 2nd pronouns 2 doc) 3

x5

⇢
1 if “!” 2 doc
0 otherwise 0

x6 log(word count of doc) ln(66) = 4.19

Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.
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Logistic regression
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values toward 0 or 1. And it’s differentiable, which as we’ll see in Section 5.8 will
be handy for learning.

We’re almost there. If we apply the sigmoid to the sum of the weighted features,
we get a number between 0 and 1. To make it a probability, we just need to make
sure that the two cases, p(y = 1) and p(y = 0), sum to 1. We can do this as follows:
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P(y = 1|x) is more than .5, and no otherwise. We call .5 the decision boundary:decision
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Let’s have an example. Suppose we are doing binary sentiment classification on
movie review text, and we would like to know whether to assign the sentiment class
+ or � to a review document doc. We’ll represent each input observation by the 6
features x1...x6 of the input shown in the following table; Fig. 5.2 shows the features
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Let’s assume for the moment that we’ve already learned a real-valued weight for
each of these features, and that the 6 weights corresponding to the 6 features are
[2.5,�5.0,�1.2,0.5,2.0,0.7], while b = 0.1. (We’ll discuss in the next section how
the weights are learned.) The weight w1, for example indicates how important a
feature the number of positive lexicon words (great, nice, enjoyable, etc.) is to
a positive sentiment decision, while w2 tells us the importance of negative lexicon
words. Note that w1 = 2.5 is positive, while w2 =�5.0, meaning that negative words
are negatively associated with a positive sentiment decision, and are about twice as
important as positive words.
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Feedforward neural network

4 CHAPTER 5 • LOGISTIC REGRESSION
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Training a neural network model

U

W

xnx1

System output !𝑦

Actual answer 𝑦
Loss function L( !𝑦, 𝑦)

Forward pass

Backward pass
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FFNN with hand-built features
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Even better: Representation learning
The real power of deep 
learning comes from the  
ability to learn features 
from the data

Instead of using hand-
built human-engineered 
features for classification, 
use learned 
representations like 
embeddings!

U

W

xnx1

e1 e2 en
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Word embeddings
Two words are similar in meaning if their contexts are similar

6.3 • WORDS AND VECTORS 9

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors
We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words, by associating
each word with a vector.

The word vector is now a row vector rather than a column vector, and hence therow vector
dimensions of the vector are different. The four dimensions of the vector for fool,
[36,58,1,4], correspond to the four Shakespeare plays. The same four dimensions
are used to form the vectors for the other 3 words: wit, [20,15,2,3]; battle, [1,0,7,13];
and good [114,80,62,89]. Each entry in the vector thus represents the counts of the
word’s occurrence in the document corresponding to that dimension.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

However, it is most common to use a different kind of context for the dimensions
of a word’s vector representation. Rather than the term-document matrix we use the
term-term matrix, more commonly called the word-word matrix or the term-word-word

matrix
context matrix, in which the columns are labeled by words rather than documents.
This matrix is thus of dimensionality |V |⇥ |V | and each cell records the number of
times the row (target) word and the column (context) word co-occur in some context
in some training corpus. The context could be the document, in which case the cell
represents the number of times the two words appear in the same document. It is
most common, however, to use smaller contexts, generally a window around the
word, for example of 4 words to the left and 4 words to the right, in which case
the cell represents the number of times (in some training corpus) the column word
occurs in such a ±4 word window around the row word. For example here is one
example each of some words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the con-
text words around it, we get a word-word co-occurrence matrix. Fig. 6.5 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

Note in Fig. 6.5 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.6 shows a spatial visualization.
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If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.
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Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the length of the vector, is generally the size of the vocabulary, of-
ten between 10,000 and 50,000 words (using the most frequent words in the training
corpus; keeping words after about the most frequent 50,000 or so is generally not
helpful). Since most of these numbers are zero these are sparse vector representa-
tions; there are efficient algorithms for storing and computing with sparse matrices.

Now that we have some intuitions, let’s move on to examine the details of com-
puting word similarity. Afterwards we’ll discuss methods for weighting cells.
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Cosine similarity

pie data computer

cherry 6.76 2.42 1.22

digital 1.65 6.85 6.83

information 1.44 6.62 6.48

cos
𝑣⃗ ) 𝑤
𝑣⃗ 𝑤

=
𝑣⃗
𝑣⃗
)
𝑤
𝑤

=
∑!"#$ 𝑣!𝑤!

∑!"#$ 𝑣!% ∑!"#$ 𝑤!%

cos 𝑐ℎ𝑒𝑟𝑟𝑦, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
6.76 ∗ 1.44 + 2.42 ∗ 6.62 + 1.22 ∗ 6.48

6.76% + 2.42% + 1.22% 1.44% + 6.62% + 6.48%
= 0.49

cos 𝑑𝑖𝑔𝑖𝑡𝑎𝑙, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
1.65 ∗ 1.44 + 6.85 ∗ 6.62 + 6.83 ∗ 6.48

1.65% + 6.85% + 6.83% 1.44% + 6.62% + 6.48%
= 0.99

semantically-
related words 
have higher
cosine similarity
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Word2Vec: Skip-gram algorithm

How to learn?
Gradient descent!

We’ll adjust the word weights 
to
• make the positive pairs 

more likely 
• and the negative pairs less 

likely, 
• over the entire training set.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2
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FFNN with word embeddings

h1 h2 h3 hdh…

U

W

y

3d⨉1

Hidden layer

Output layer
sigmoid

The... dessert is

wt-1

w2w1

dh⨉3d

dh⨉1

|V|⨉dh

Projection layer
embeddings

p(positive sentiment|The dessert is…)

^

embedding for
word 7

embedding for 
word 23864

embedding for
word 534

w3

E

…
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Issue: Texts come in different sizes
• This assumes a fixed size length (3)!  à unrealistic

• One simple solution (more sophisticated solutions later):
Create a single "sentence embedding" (the same  
dimensionality as a word) to represent all the words
• Averaging pooling:

Take the mean of all the word embeddings
• Max pooling:

Take the element-wise max of all the word embeddings 
àFor each dimension, pick the max value from all words
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Averaged word embedding
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Language model
Goal: Compute the probability of a sentence or sequence of words

P(a pile of shaving cream)     or     P(cream|a pile of shaving)
P(W) = P(w1,w2,w3,…wn)               P(wn|w1,w2,w3,…wn-1)  

à Language Model (LM)
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N-gram language model
Bigram model using the Maximum Likelihood Estimate 
(MLE)

Count(wi-1,wi)
Count(wi-1)P(wi|wi-1) =

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

P(I|<s>)=
!
"=0.67        P(am|I)=

!
" =0.67         P(Sam|am)=

#
! =0.5 

P(</s>|Sam)=
#
! =0.5   P(Sam|<s>)=

#
" =0.33  P(do|I)=

#
" =0.33
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Simple FFNN language model
Task: Predict next word wt given prior words wt-1, wt-2, 
wt-3, …

Problem: Sequences of arbitrary length

Solution: Sliding windows (of fixed length)
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Model architecture
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Why Neural LMs work better than N-gram LMs
Training data:
We've seen: I have to make sure that the cat gets fed. 
Never seen: dog gets fed

Test data:
I forgot to make sure that the dog gets ___
N-gram LM can't predict "fed"!
Neural LM can use similarity of "cat" and "dog" 
embeddings to generalize and predict “fed” after dog
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To do
• Optional reading: SLP Ch7
• Review Colab


