

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Computational Linguistics LT3233

Jixing Li Lecture 11: Feedforward Neural Network with Word Embeddings Slides adapted from Dan Jurafsky

© Jixing Li

Lecture plan

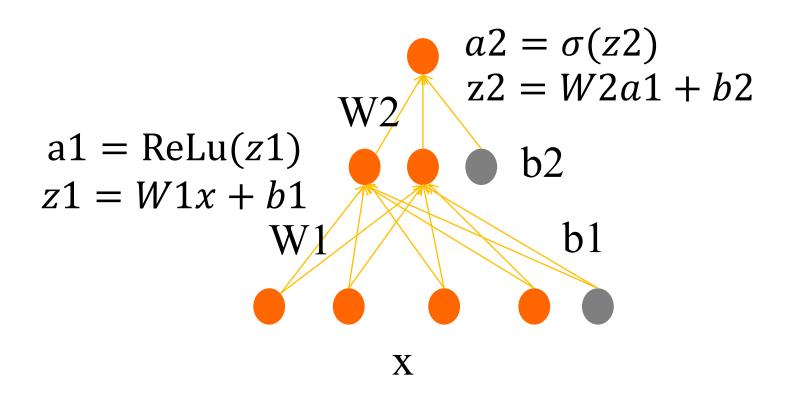
- Classification with FFNN
- Language model with FFNN
- PyTorch implementation
- Short break (15 mins)
- Hands-on exercises

Use cases for feedforward neural networks

1. Text classification

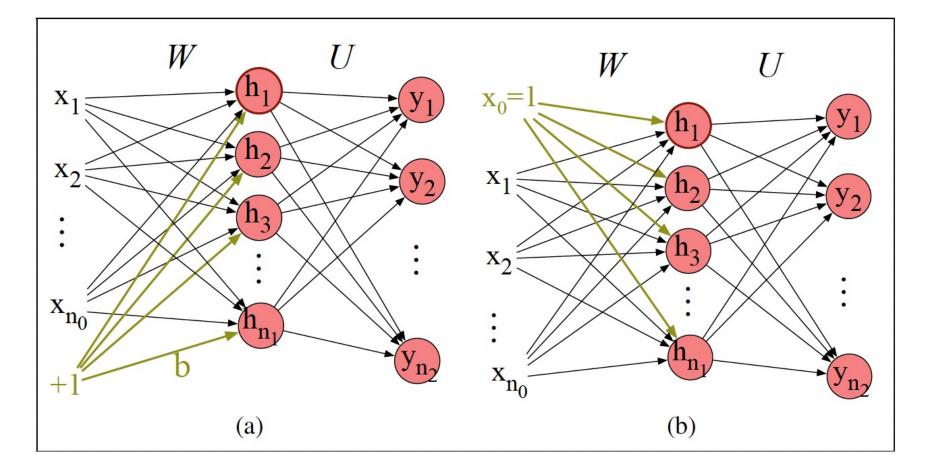
2. Language modeling

State-of-the-art systems use more powerful neural architectures, but simple models are useful to consider!



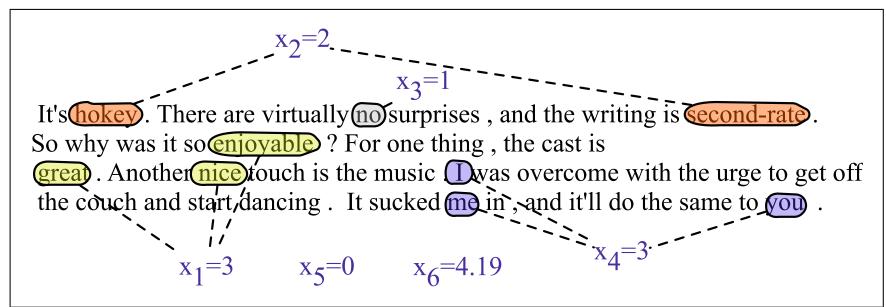
Replacing the bias unit

Let's switch to a notation without the bias unit *b* Add a dummy node $a_0=1$ to each layer, its weight w_0 will be the bias So input layer $a^{[0]}_0=1$, $a^{[1]}_0=1$, $a^{[2]}_0=1$,...



Sentiment analysis

Using hand-built features



x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
<i>X</i> 4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> 5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	$\log(\text{word count of doc})$	$\ln(66) = 4.19$

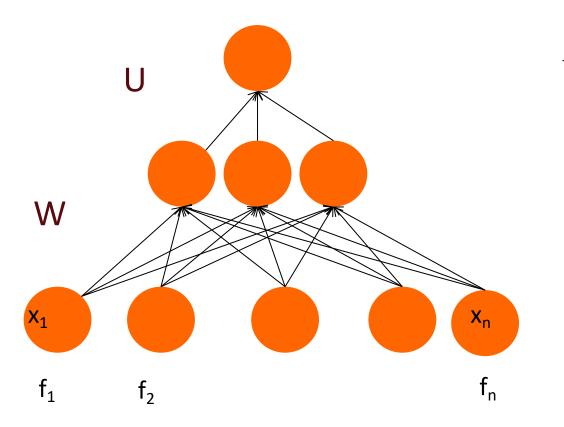
It's hokey. There are virtually no surprises, and the writing is second-rate So why was it so enjoyable? For one thing, the cast is great . Another nice to uch is the music (Dwas overcome with the urge to get off) the couch and start dancing. It sucked me in, and it'll do the same to you $count(positive lexicon) \in doc)$ x_1 $gount(negative lexicon) \in doc)$ "no" \in doc χ_3 otherwise count(1st and 2nd pronouns \in doc) 3 χ_4 **X**_n if "!" \in doc 0 x_5 otherwise f_n f_1 f_2 $\log(\text{word count of doc})$ $\ln(66) = 4.19$ x_6

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(.833)$
= 0.70

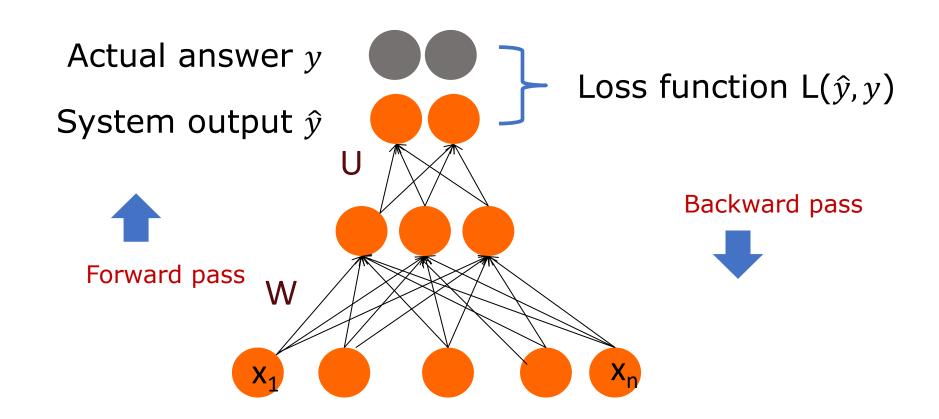
© Jixing Li

Feedforward neural network

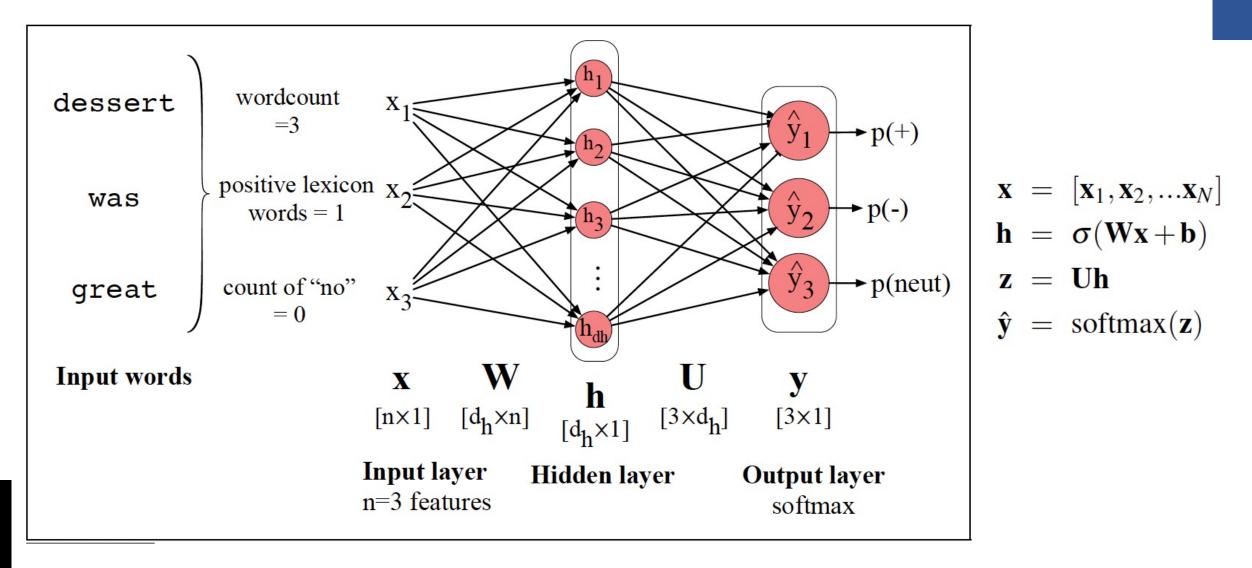


x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(66) = 4.19$

Training a neural network model



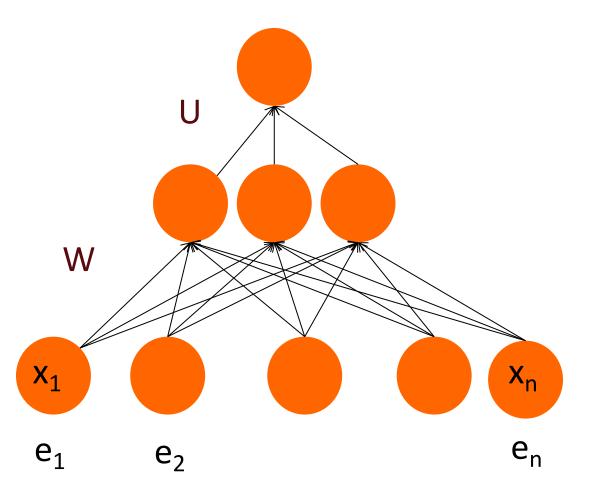
FFNN with hand-built features



Even better: Representation learning

The real power of deep learning comes from the ability to **learn features** from the data

Instead of using handbuilt human-engineered features for classification, use learned representations like embeddings!



Word embeddings

Two words are similar in meaning if their contexts are similar

is traditionally followed by cherry often mixed, such as
computer peripherals and personal a computer. This includes
computer. This includes
cherry pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	C							
information								

Cosine similarity

$$\cos(cherry, information) = \frac{6.76 * 1.44 + 2.42 * 6.62 + 1.22 * 6.48}{\sqrt{6.76^2 + 2.42^2 + 1.22^2}\sqrt{1.44^2 + 6.62^2 + 6.48^2}} = 0.49$$

semanticallyrelated words have higher cosine similarity

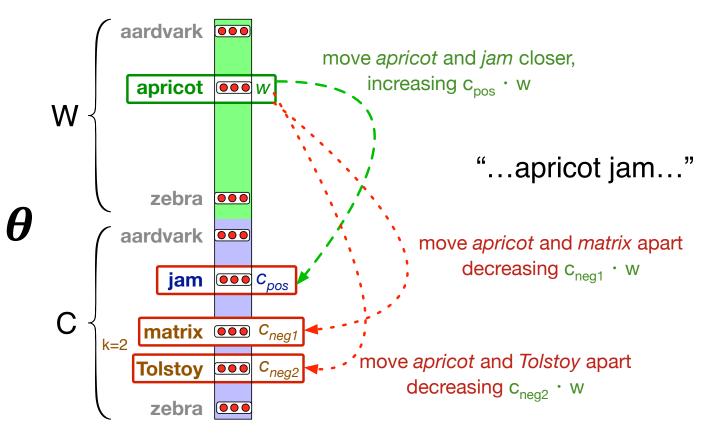
 $\cos(digital, information) = \frac{1.65 * 1.44 + 6.85 * 6.62 + 6.83 * 6.48}{\sqrt{1.65^2 + 6.85^2 + 6.83^2}\sqrt{1.44^2 + 6.62^2 + 6.48^2}} = 0.99$

Word2Vec: Skip-gram algorithm

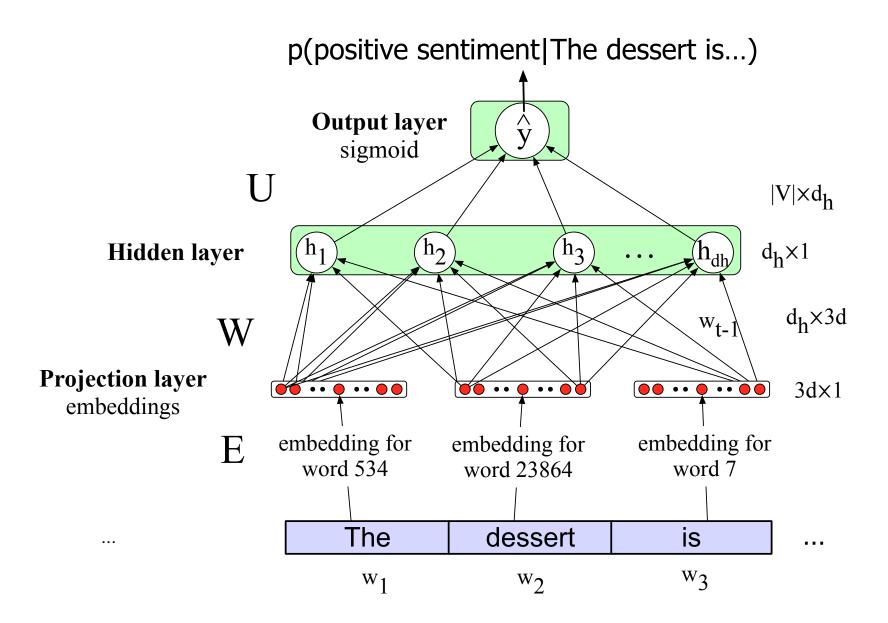
How to learn? Gradient descent!

We'll adjust the word weights to

- make the positive pairs more likely
- and the negative pairs less likely,
- over the entire training set.



FFNN with word embeddings



© Jixing Li

Issue: Texts come in different sizes

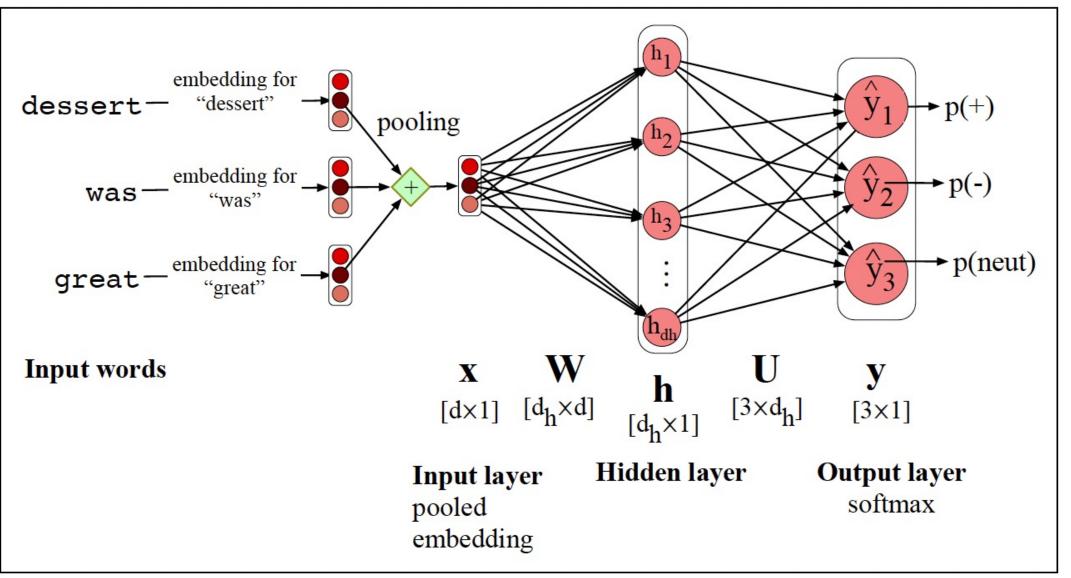
- This assumes a fixed size length (3)! \rightarrow unrealistic
- One simple solution (more sophisticated solutions later): Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words
 - Averaging pooling:

Take the mean of all the word embeddings

• Max pooling:

Take the element-wise max of all the word embeddings \rightarrow For each dimension, pick the max value from all words

Averaged word embedding



Language model

Goal: Compute the probability of a sentence or sequence of words

or

P(a pile of shaving cream) $P(W) = P(w_1, w_2, w_3, \dots w_n)$

→ Language Model (LM)

- G the most important thing in life is
- Q the most important thing in life is Google Search
- Q the most important thing in life is health
- Q the most important thing in life is family
- Q the most important thing in life is love

P(cream | a pile of shaving) $P(w_n | w_1, w_2, w_3, \dots w_{n-1})$

N-gram language model

Bigram model using the Maximum Likelihood Estimate (MLE)

$$\mathbf{P}(w_i|w_{i-1}) = \frac{\mathbf{Count}(w_{i-1},w_i)}{\mathbf{Count}(w_{i-1})}$$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

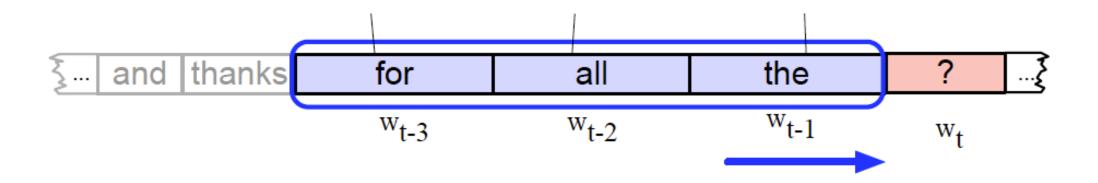
$$P(I|~~) = \frac{2}{3} = 0.67 \qquad P(am|I) = \frac{2}{3} = 0.67 \qquad P(Sam|am) = \frac{1}{2} = 0.5~~$$
$$P(|Sam) = \frac{1}{2} = 0.5 \qquad P(Sam|~~) = \frac{1}{3} = 0.33 \qquad P(do|I) = \frac{1}{3} = 0.33~~$$

Simple FFNN language model

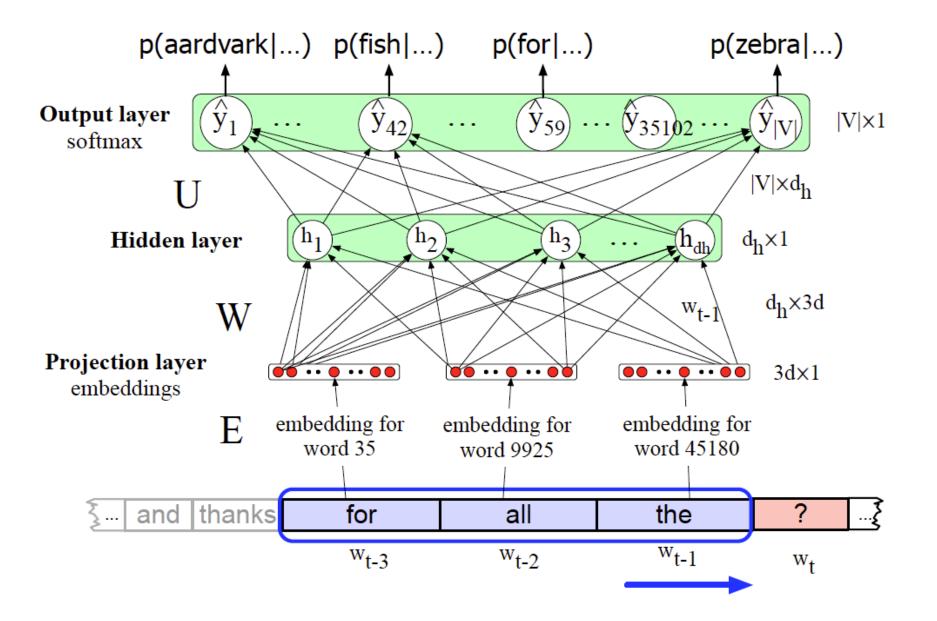
Task: Predict next word w_t given prior words w_{t-1} , w_{t-2} , w_{t-3} , ...

Problem: Sequences of arbitrary length

Solution: Sliding windows (of fixed length)



Model architecture



© Jixing Li

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed. Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets _____

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

To do

- Optional reading: **SLP** Ch7
- Review Colab