Department of

Linguistics and Translation
7 5t 4 K B

City University of Hong Kong

Computational Linguistics
LT3233

B

-

Jixing Li
Lecture 11: Feedforward Neural Network
with Word Embeddings

Slides adapted from Dan Jurafsky © Jixing Li

Lecture plan

» Classification with FFNN
- Language model with FFNN
* PyTorch implementation

e Hands-on exercises

© Jixing Li

Use cases for feedforward neural networks

1. Text classification
2. Language modeling

State-of-the-art systems use more powerful neural architectures,
but simple models are useful to consider!

@ a2 = o(z2)
al = ReLu(z1) \z2. Z’Z b2W2a1 o
z1=W1lx + b1l
Wi bl
O 6 0 00

X

© Jixing Li

Replacing the bias unit I

Let's switch to a notation without the bias unit b
Add a dummy node a,=1 to each layer, its weight wy will be the bias

So input layer al%ly=1, allly=1, al2ly=1,...

w U W]

2 A @ 29 1\

A< @) — W
S %@t {{@
' e{jli'@‘g"i TS

: , X <
/?A,Q/‘ T
) —® \“@ \?\@

(a) (b)

+1

© Jixing Li

Sentiment analysis

Using hand-built features

. -
-
-—
—
—

So Why was 1t so@njovable ? For one thlng the cast is
). Anothe touch is the music (Dzvas overcome with the urge to get off
the ccmch and start,dancmg It sucked @m ,\a\nd it'll do the same to to_fou) .

\ \\ /’

x(=3 xg=0 xc=419 47
X1 count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) 2
“ { 1 if “no” € doc {
0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. 1 if “!” €doc 0
> 0 otherwise
x¢ log(word count of doc) In(66) =4.19

© Jixing Li

Logistic regression

X1
X2

X3
X4
A5

X6

o(w-x+Db)

count(positive lexicon) € doc)

count(negative lexicon) € doc)
1 if “no” € doc

{ O otherwise

count(1st and 2nd pronouns € doc)
I if “!” edoc

{ 0 otherwise

log(word count of doc)

In(66) = 4.19

o([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.19] +0.1)

(.833)
70

-

© Jixing Li

Feedforward neural network

X1
X2

X3
X4
A5

X6

count(positive lexicon) € doc)

count(negative lexicon) € doc)
I if “no” € doc

{ O otherwise

count(1st and 2nd pronouns € doc)
I if “!” €doc

{ 0 otherwise

log(word count of doc)

W

1
3
0

In(66) = 4.19

© Jixing Li

Training a neural network model

— Loss function L($,y)

Backward pass

© Jixing Li

FFNN with hand-built features

dessert wordcount X
=3
} positive lexicon x X = |XayXosecXpy]
was B 2]yA2, N
words = 1
h = o(Wx+b)
great count of “no” X3 z = Uh
) =9 ” § = softmax(z)
Input words X W h U y
[nx1] [dyxn] [d; X1] [3Xdy)] |35l |
Input layer Hidden layer Output layer
n=3 features softmax

© Jixing Li

Even better: Representation learning

The real power of deep
learning comes from the
ability to learn features
from the data

Instead of using hand-
built human-engineered
features for classification,
use learned
representations like
embeddings!

© Jixing Li

Word embeddings

Two words are similar in meaning if their contexts are similar

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

aardvark ... computer data result pie sugar
cherry 0 2 8 9 4472 25
strawberry 0 0 0 1 60 19
information 0 3325 3982 378 5 13

© Jixing Li

Cosine similarity

o N pie data computer
(VW) w N viw;
CoS | —— — cherry 6.76 2.42 1.22
[v]|w] Wl \/2 . \/2 digital 1.65 6.85 6.83
=1V information 1.44 6.62 6.48
cos(cherry,information)
6.76 x 1.44 + 2.42 x 6.62 + 1.22 * 6.48 — 0.49 semantically-

" V6.762 + 2.422 + 1.222/1.442 + 6.622 + 6.482

cos(digital, information)
1.65 % 1.44 + 6.85 * 6.62 + 6.83 * 6.48

V1.65% + 6.852 + 6.832V1.442 + 6.622% + 6.48%

related words
have higher
cosine similarity

© Jixing Li

Word2Vec: Skip-gram algorithm

How to learn?

_ (aardvark °0eo
Gradient descent! move apricot and jam closer,
apricot [@eew | — = < - increasing €, * W
W A . \
We'll adjust the word weights Ny «apricot jam...”
to k zebra [ee9 " /’\
« make the pOS|t|ve pairs 0 (aardvark axn ,"‘ . move apricot and matrix apart
more likely L decreasing Gy
. . pOS ' '
« and the negative pairs less VL
|Ik6|y, C <k=2 matrix @9 C. [« -~
. .. 000 . . - _move apricot and Tolstoy apart
- over the entire training set. K Tolstoy 229 “resr] decreasing c,,_, * w
zebra |eee

© Jixing Li

FFNN with word embeddings

p(positive sentiment|The dessert is...)

Output layer
sigmoid
U Vixd,
Hidden layer @ @\ v,"*ﬁ @ dp, X1
/’7‘” <'l d, x3d
v %/'V% Vb
ProjeCtiOQ layer S .- @ - 00) (0 <+ @ ++ 09 @@ -+ @ --00) 3dxl
embeddings “ T T
E embedding for ~ embedding for embedding for
word 534 word 23864 word 7
The dessert IS

© Jixing Li

Issue: Texts come in different sizes

* This assumes a fixed size length (3)! - unrealistic

* One simple solution (more sophisticated solutions later):
Create a single "sentence embedding” (the same

dimensionality as a word) to represent all the words
- Averaging pooling:
Take the mean of all the word embeddings
« Max pooling:
Take the element-wise max of all the word embeddings
—->For each dimension, pick the max value from all words

© Jixing Li

Averaged word embedding

embedding for (@
dessert— “dessert” —'3

embedding for
Wa S DR “Wasn i

©0®

embedding for
great “great” B

o 1)

Input words

[dx1] [dyXxd]

[Bxdy] [3x1]

[dy,x1]
Input layer Hidden layer Output layer
pooled softmax
embedding

© Jixing Li

Language model

Goal: Compute the probability of a sentence or sequence of words

P(a pile of shaving cream) or P(cream]|a pile of shaving)
P(W) = P(W1/W2/W3/-"Wn) P(Wn|W1/W2/W3/---Wn-1)

- Language Model (LM)

G the most important thing in life is
the most important thing in life is - Google Search
the most important thing in life is health

the most important thing in life is family

L 0 0 L0

the most important thing in life is love

© Jixing Li

N-gram language model

Bigram model using the Maximum Likelihood Estimate
(MLE)

_ Count(w,_;,w;)
P(w;lw;.;) = Count(w,,)
<s>ITam Sam </s>

<s>SamlIlam </s>

<s> I do not like green eggs and ham </s>

2 2 1
P(I|<s>)=§=0.67 P(am|l)= 3 =0.67 P(Sam|am)= Py =0.5
1 1 1
P(</s>|Sam)= > =0.5 P(Sam|<s>)= 3 =0.33 P(do|l)= 3 =0.33

© Jixing Li

Simple FFNN language model

Task: Predict next word w; given prior words W1, W5,
W3, ...

Problem: Sequences of arbitrary length

Solution: Sliding windows (of fixed length)

‘1 J |

-| and |thanl [for all the] ? s
Wt-3 Wt-2 Wt-1 Wy
ﬁ

© Jixing Li

Model architecture

p(aardvark]...) p(fish|...) p(for|...) p(zebral...)
oursir Oz Ouh o O oo Gosha i) e
softmax W/
Hidden layer
Projection layer / -
embeddings
E embedding for embedding for embedding for
word 35 word 9925 word 45180
\ ! !
.| and thanks[for all the] ? |$
Wt-3 Wt-2 Wt-1 Wi
ﬁ

© Jixing Li

Why Neural LMs work better than N-gram LMs I

Training data:

We've seen: I have to make sure that the cat gets fed.
Never seen: dog gets fed

Test data:
I forgot to make sure that the dog gets
N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog"
embeddings to generalize and predict “fed” after dog

© Jixing Li

To do I
* Optional reading: SLP Ch7

 Review Colab

© Jixing Li

