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Lecture plan

- Recap: Language model with FFNN
« RNN

« Hands-on exercises
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Language model
Language Model (LM): A system that predicts the next word

Goal: Compute the probability of a sentence or sequence of words
P(a pile of shaving cream) or P(cream]|a pile of shaving)

P( W) = P(Wll Wo, W3/-" Wn) P(Wn | Wi, Wy, W3/--- Wn-l)

N-gram language model:

Count(w;., w))

P(wilw, ;) = Count(w,,)
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Simple FFNN language model

Predicting next word w; given prior words W;_q, W;.», Wt.3, ... USINg
sliding windows (of fixed length)
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FFNN LMs

Improvements over n-gram LMs:

e No sparsity problem

e Don’t need to store all observed n-grams

e Embeddings can generalize and predict unseen words

Remaining problems:
e Fixed window is too small
e Enlarging window enlarges W

O=ROW O DY
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Recurrent Neural Networks (RNN)
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RNN basic structure

outputs
(optional) {

hidden states <

input sequence
(any length) {
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RNN language model

94 = P(x®)|the students opened their)
books
l laptops
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RNN language model

Advantages:
e Can process any length input

e Computation for step t can (in theory) use information from
many steps back

e Model size doesn’t increase for longer input context: Same
weights applied on every timestep
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Training an RNN LM
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Backpropagation for RNNs

J ()
L) h(’ —3) h(l -2) h(f 1) h(t)
@ n 0 ‘o O
o\ W, Wi @ W, |@| Wr |@| W |@| W,
® : @ O O O 5
® ® O O Kl
—/ —/ [l e =

The derivative of 7V (9) w.r.t. the repeated weight matrix
W, is the sum of the gradient w.r.t. each time it appears

O.J(t) O.J(t)
OWh ; (i)
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Backpropagation through time

JO(9)
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Backpropagate over timesteps i=t,...,0, summing gradients
as you go - “backpropagation through time”

In practice, often “truncated” after ~20 timesteps for
training efficiency reasons
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Generating text with an RNN LM

favorite  season is spring
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RNN Applications

POS tagging

DT J NN VBN

Ty

the startled cat knocked over
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Speech recognition

RNN-LM
AL
4 N
what’s the weather

Input (audio)

<START>  what’s the

Sentiment analysis

positive

Sentence
encoding

Take element-wise
max or mean of all
hidden states

enjoyed the movie a lot

overall /
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To do I
» Optional reading: SLP Cho9

* Do HWO
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