

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Computational Linguistics LT3233

Jixing Li Lecture 2: POS tagging

Slides adapted from John Hale

© Jixing Li

Lecture plan

- What are parts of speech (POS)?
- How to build a POS tagger?
- Short break (15 mins)
- Hands-on exercises

Phrasal vs lexical categories

A tree structure for "The happy girl eats candy":

© Jixing Li

Part-of-speech

NOUN, VERB, ADJ (Adjective), ADV (Adverb)

- \rightarrow Open class words: words have semantic content
- →New nouns and verbs are continually created: *iPhone*, *tweet*, *instagrammable*, *internet troll*, *etc*.
- DET (Determiner), ADP (Adposition/Preposition), PRON
 (Pronoun), PRT (Particle), CONJ (Conjunction)

 →Closed class words: grammatical/functional words
 →Relatively fixed membership

Is that all?

Interjections

- *Uh oh*, that's too bad.
- Yes, I'd like that.
- That's nice, eh?
- *Hooray*, she won gold.
- There are a few odd ones that are hard to classify:
 - to in infinitives:
 - I tried *to* finish. I went *to* school.
 - negative particle not
 - She did *not* eat. She is *not* happy.
- And many more...

POS in different datasets

tagset: A list of possible POS tags.

Brown
nltk.corpus.brown.tagged words()[:5] # 1

```
[('The', 'AT'),
('Fulton', 'NP-TL'),
('County', 'NN-TL'),
('Grand', 'JJ-TL'),
('Jury', 'NN-TL')]
```

Penn Treebank

nltk.corpus.treebank.tagged_words()[:5]

```
[('Pierre', 'NNP'),
('Vinken', 'NNP'),
(',', ','),
('61', 'CD'),
('years', 'NNS')]
```

The Brown Corpus and the Penn Treebank Corpus

Brown: text samples of American English, of varied genres.
Penn Treebank: one million words of 1989 Wall Street
Journal material annotated in a syntactic tree style.

Brown and the Penn Treebank

Brown:

The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl said/vbd Friday/nr an/at investigation/ nn of/in Atlanta's/np\$ recent/jj primary/nn election/nn produced/vbd ``/` no/at evidence/nn "/" that/cs any/dti irregularities/nns took/vbd place/nn ./.

The/at jury/nn further/rbr said/vbd in/in termend/nn presentments/nns that/cs the/at City/nntl Executive/jj-tl Committee/nn-tl ,/, which/wdt had/hvd over-all/jj charge/nn of/in the/at election/nn ,/, ``/`` deserves/vbz the/at praise/nn and/cc thanks/nns of/in the/at City/nn-tl of/in-tl Atlanta/np-tl "/" for/in the/at manner/nn in/in which/wdt the/at election/nn was/bedz conducted/vbn ./.

Penn Treebank

```
(CODE (SYM SpeakerB1) (. .) ))
( (SBARQ
    (INTJ (UH So) )
    (WHNP-1
      (WHADJP (WRB how) (JJ many) )
      (, ,)
      (INTJ (UH um) )
      (, ,) (NN credit) (NNS cards) )
    (SQ (VBP do)
      (NP-SBJ (PRP you) )
      (VP (VB have)
        (NP (-NONE- *T*-1) )))
    (. ?) (-DFL- E S) ))
( (CODE (SYM SpeakerA2) (. .) ))
( (S
    (INTJ (UH Um) )
   (, ,)
    (NP-SBJ (PRP I) )
    (VP (VBP think)
      (SBAR (-NONE- 0)
        ( S
          (NP-SBJ (PRP I) )
          (VP (VBP 'm)
            (PP-PRD (IN down)
               (PP (IN to)
                (NP (CD one) )))))))
    (. .) (-DFL- E S) ))
( (CODE (SYM SpeakerB3) (. .) ))
( (INTJ
    (INTJ (UH Oh) )
    (, ,)
    (INTJ (PRP$ my) (UH gosh) )
    (, ,) (-DFL- E S) ))
( (S
    (NP-SBJ (PRP I) )
    (VP (VBP wish)
      (SBAR (-NONE- 0)
        (S
          (NP-SBJ (PRP I) )
          (VP (VBD was)
            (NP-MNR-PRD (DT that) (NN way) )))))
    (. .) (-DFL- E_S) ))
```

© Jixing Li

A universal POS tagset

The 'Universal Dependency' project (Nivre et al., 2016).

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
•	punctuation marks	.,;!
Х	other	ersatz, esprit, dunno, gr8, univeristy

Change to universal tagset

Universal tagset
nltk.corpus.brown.tagged_words(tagset='universal')[:5]

```
[('The', 'DET'),
('Fulton', 'NOUN'),
('County', 'NOUN'),
('Grand', 'ADJ'),
('Jury', 'NOUN')]
```

nltk.corpus.treebank.tagged_words(tagset='universal')[:5]

```
[('Pierre', 'NOUN'),
 ('Vinken', 'NOUN'),
 (',', '.'),
 ('61', 'NUM'),
 ('years', 'NOUN')]
```

POS ambiguity

- ~85% of words always have the same POS:
- she/PRON, very/ADV
- ~15% of words can take on multiple POS:
- Tim likes to go for *walks*/**NOUN**. Joe *walks*/**VERB** to school every day.
- January is a *cold*/**ADJ** month. I have a very bad *cold*/**NOUN**.
- I like *that*/**DET** pie. I like *that*/**NOUN**. I told you *that*/**SCONJ** he's lying.
- These ambiguous words tend to be very common.
- In *Brown Corpus*, 11.5% of all **word types** and 40% of **word tokens** are ambiguous!

Part-of-speech tagging

 POS tagging is a set of computer processes by which a single POS tag is assigned to each word, symbol, punctuations in a sentence.

• This is one of the earlier steps in an NLP task, following tokenization.

POS-tagged corpora in NLTK

- NLTK data include many corpus resources with POS tags.
 - The Brown Corpus, The Penn Treebank Corpus, NPS Chat Corpus, Chinese, Hindi, Spanish, Portuguese...
 - You can also load POS-tagged words or sentences.

```
nltk.corpus.treebank.tagged_words(tagset='universal')[0]
```

```
('Pierre', 'NOUN')
```

nltk.corpus.treebank.tagged_sents(tagset='universal')[0]

```
[('Pierre', 'NOUN'),
 ('Vinken', 'NOUN'),
 (',', '.'),
 ('61', 'NUM'),
```

...

NLTK's POS tagger

```
sent = 'The happy girl eats candy.'
tokens = word_tokenize(sent)
nltk.pos_tag(tokens, tagset='universal')
```

```
[('The', 'DET'),
 ('happy', 'ADJ'),
 ('girl', 'NOUN'),
 ('eats', 'NOUN'),
 ('eats', 'VERB'),
 ('.', '.')]
```

How would you design a POS tagger?

- 1. Tag everything a **NOUN**.
 - Why? Because **NOUN** is the most common POS.
 - * Problem? Poor coverage.
- 2. Consider the morphology.
 - words end in 'ly' (*really, happily*) → ADV
 - words end in 'ed' (wanted, liked) → VERB
 - * Problem? '*fly'* end in 'ly' but is not an adverb. Not every word has an identifiable morphological marker.

3. Maintain a dictionary of word and its POS. For each word, simply look up its tag in the dictionary.

* Problem? Ambiguity.

'He has a question/NOUN', 'He questioned/VERB the results.'

N-gram taggers

- 1. The dictionary lists the most common POS tag for a word.
 - 'question' → NOUN (more frequent than VERB)
- Instead of just individual word, the dictionary lists the most common tag for the preceding POS + the word.
 - `would/AUX *question*' → VERB
 - `the/DET question' → NOUN
- Why stop at just one preceding POS? Consider two.
 - 'water/NOUN is/AUX cold' → ADJ
 - have/VERB a/DET cold' → NOUN

data[('question','NOUN')]

240

data[('question','VERB')]

Unigram Tagger

Bigram Tagger

Trigram Tagger

17

The bigger the context the better?

trigram tagger always better than bigram tagger?
 bigram tagger always better than unigram tagger?

test the taggers on unseen sentences
test_sents = word_tokenize('The happy girl eats candy.')
unigram_tagger.tag(test_sents)

[('The', 'DET'), ('happy', 'ADJ'), ('girl', 'NOUN'), ('eats', 'VERB'), ('candy', 'NOUN'), ('.', '.')]

bigram_tagger.tag(test_sents)

[('The', 'DET'), ('happy', 'ADJ'), ('girl', 'NOUN'), ('eats', None), ('candy', None), ('.', None)]

trigram_tagger.tag(test_sents)

[('The', 'DET'), ('happy', 'ADJ'), ('girl', 'NOUN'), ('eats', None), ('candy', None), ('.', None)] The larger the context, the more specific it gets, the chance of a particular context not found in the corpus data increases.

→ the **sparse data problem**.

Addressing sparse data problem

Combine n-gram taggers as stacked back-off models:

- 1. Look up **"POSn-2 POSn-1** *word*" in the *trigram* tagger.
- 2. If it's not found, look up **"POSn-1** *word*" in the *bigram* tagger.
- 3. If it's not found, look up "word" in the unigram tagger.
- 4. If it's not found (unknown word), use the *Default Tagger* where everything gets tagged **NOUN**.

Stacked n-gram tagger

- # train the stacked n-gram tagger
- t0 = nltk.DefaultTagger('NOUN')
- t1 = nltk.UnigramTagger(train_sents, backoff=t0)
- t2 = nltk.BigramTagger(train_sents, backoff=t1)
- t3 = nltk.TrigramTagger(train_sents, backoff=t2)

```
`train' and `test'?
```

```
#test the stacked n-gram tagger
t3.tag(test_sents)
```

```
[('The', 'DET'),
 ('happy', 'ADJ'),
 ('girl', 'NOUN'),
 ('eats', 'VERB'),
 ('candy', 'NOUN'),
 ('.', '.')]
```

Training and testing data

- When you build an NLP model using corpus data, you want to be able to evaluate it to see how well it performs.
 - But typically, you want to evaluate the performance on *unseen* data to make sure your model generalizes well to new sentences.
 - These unseen data should also have correct annotations, if you were to perform *automated* evaluation.
- Therefore, it is customary to partition your data into two sets:

Training data (building model)

Testing data (evaluating model)

Preparing training/testing datasets

brown sents = nltk.corpus.brown.tagged sents(tagset='universal') len(brown sents) 57340 size = round(len(brown sents)*0.9) size 51606 train sents = brown sents[:size] test sents = brown sents[size:] len(train sents) 51606

 Training data: first 90% of the Brown Corpus

• Testing data: last 10% of the same

Tokenized sentences are used for training, not tokenized words

len(test_sents)

Evaluating a tagger

Compare the output of a tagger with a human-labelled (presumed "correct") gold standard

t0.accuracy(test_sents)

0.1853691247040087

t1.accuracy(test_sents)

0.9523899331531192

t2.accuracy(test_sents)

0.964355315270007

t3.accuracy(test_sents)

0.9663984409379518

Find the mistakes

```
guess = [(word, hypothesis) for s in test_sents for (word, hypothesis) in t3.tag(untag(s))]
```

```
wrong = [(word,hypothesis,actual,s) for ((word,hypothesis),(_,actual,s)) in zip (guess, [(w,t,s)
for s in test_sents for (w,t) in s]) if hypothesis != actual and hypothesis is not None]
```


Hard for humans too!

Evaluating a tagger

- But how good is "**good**"? 90%? 95%? 98%...?
 - We need to establish a baseline.
 - A good unigram tagger can already achieve **90-91%** (!)
 - Bigram/trigram ... taggers should show a better performance.
- How about a ceiling?
 - Agreement between **human annotators** tops out at about 97%. Therefore, trained taggers cannot be expected to perform better than that.

To do

Leave a comment for Lecture 2!

https://jixing-li.github.io/comments.html

- Submit HW1
- Optional reading: NTLK Ch5; SLP Ch8.