

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Computational Linguistics LT3233

Jixing Li Lecture 3: N-gram Models

Slides adapted from Dan Jurafsky, Jordan Boyd-Graber

© Jixing Li

Lecture plan

- What are n-gram models?
- How to evaluate n-gram models?
- Short break (15 mins)
- Hands-on exercises

The Shannon game

In the Shannon game, I show you a bit of English, and you need to tell me what the next character is going to **b**e

I have a sad story to tell you It may hurt your feelings a bit Last night I walked into my bathroom And stepped in a pile of shaving cream

Prediction and Entropy of Printed English By C. E. SHANNON

(Manuscript Received Sept. 15, 1950)

A new method of estimating the entropy and redundancy of a language is described. This method exploits the knowledge of the language statistics possessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of experiments in prediction are given, and some properties of an ideal predictor are developed.

Claude Shannon (1916-2001)

© Jixing Li

Computers play the Shannon Game

Probabilistic language models

Goal: Compute the probability of a sequence of words

P(*a pile of shaving cream***) or P(***cream|a pile of shaving***)**

 $P(W) = P(W_1, W_2, W_3, ... W_n)$ $P(W_n|W_1, W_2, W_3, ... W_{n-1})$

- à **Language Model (LM)**
- **Spell correction: P(***a huge effect on***) > P(***a huge affect on***)**
- **Speech recognition: P(***I saw a van***) > P(***eyes awe of an***)**
- **Summarization, question-answering, etc.**

How to compute P(*W***)**

P(*a pile of shaving cream***)**

The Chain Rule: $P(A,B) = P(A)P(B|A)$

More variables: $P(A,B,C) = P(A)P(B|A)P(C|A,B)$ $P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$

 $P(W_1, W_2, W_3, ... W_n) = \prod_{i=1}^n P(w_i | w_1, w_2, w_3, ... w_{i-1})$

Chain rule applied to compute joint probability of words in sentence

 $P(W_1, W_2, W_3, ... W_n) = \prod_{i=1}^n P(W_i | W_1, W_2, W_3, ... W_{i-1})$

P(*a pile of shaving cream***) = P(***a***) x P(***pile|a***) x P(***of|a pile***) x P(***shaving|a pile of***) x P(***cream|a pile of shaving***)**

P(*I walked into my bathroom***) = ?**

How to estimate these probabilities

Divide and count?

P(*a pile of shaving cream*) = $P(a) \times P(pi|e|a) \times P(0f|a|p) \times P(0f|b)$ **P(***shaving|a pile of***) x P(***cream|a pile of shaving***)**

© Jixing Li

Markov assumption

Simplifying assumption:

P(*cream|a pile of shaving***) ≈ P(***cream|shaving***)**

Or maybe:

P(*cream|a pile of shaving***) ≈ P(***cream|of shaving***)**

 $P(w_1, w_2, w_3, ... w_n) \approx \prod_{i=1}^n P(w_i|w_{i-k}, ... w_{i-1})$

Andrey Markov (1856-1922)

Simplest case: Unigram model

$$
\mathbf{P}(W_1, W_2, W_3, \ldots W_n) \approx \prod_{i=1}^n \mathbf{P}(W_i)
$$

P(*a pile of shaving cream***) ≈ P(***a***)P(***pile***)P(***of***)P(***shaving***)P(***cream***)**

© Jixing Li

Bigram model

Condition on the previous words:

$P(w_1, w_2, w_3, ... w_n) \approx \prod_{i=1}^n P(w_i|w_{i-1})$

P(*a pile of shaving cream***) ≈ P(***a***)P(***pile|a***)P(***of|pile***)P(***shaving|of***)P(***cream|shaving***)**

N-gram models

We can extend to trigrams, 4-grams, 5-grams... In general, this is an insufficient model of language

The bulldogs that are fought by the bulldogs that the bulldogs fight, fight.

à **long-distance dependencies**

Chomsky: language is not Markovian

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$
P(w_i|w_{i-1}) = \frac{Count(w_{i-1},w_i)}{Count(w_{i-1})}
$$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$
P(I|~~) = \frac{2}{3} = 0.67~~
$$

\n
$$
P(am|I) = \frac{2}{3} = 0.67
$$

\n
$$
P(Sam|am) = \frac{1}{2} = 0.5
$$

\n
$$
P(\text{Sam}) = \frac{1}{2} = 0.5
$$

\n
$$
P(Sam|~~) = \frac{1}{3} = 0.33~~
$$

\n
$$
P(do|I) = \frac{1}{3} = 0.33
$$

More examples: Berkeley Restaurant Project Sentences

- *can you tell me about any good Cantonese restaurants close by*
- *mid priced thai food is what i'm looking for*
- *tell me about chez panisse*
- *can you give me a listing of the kinds of food that are available*
- *i'm looking for a good place to eat breakfast*
- *when is caffe venezia open during the day*

Raw bigram counts

Out of 9222 sentences

Raw bigram probabilities

Unigram count

Normalized by unigrams

Bigram estimates of sentence probabilities

P(\langle s> *i eat chinese food* \langle /s>) = **P(***i*| \langle s>) x **P(***eat*|*i*) x **P(***chinese|eat***)** x **P(***food|chinese***)** x **P(**</s>|food**)** $= 0.25 \times ? \times ? \times ? \times 0.68 = 0.00000668$

What kinds of knowledge?

P(*english|want***) = .0011 P(***chinese|want***) = .0065 P(***to|want***) = .66 P(***want|spend***) = 0** $P(food|to) = 0$ **world knowledge grammar contingent zero**

five steps to food safety

Practical issues

We do everything in log space

• Avoid arithmetic underflow

P(\leq s> *i eat chinese food* \leq /s>) = **P(***i*| \leq s>) x **P(***eat|i***)** x **P(***chinese|eat***)** x **P(***food|chinese***)** x **P(**</s>|food**)**

- **=** 0.25 x 0.0036 x 0.021 x 0.52 x 0.68
- **= 0.00000668**
- Adding is faster than multiplying

log(P(<s> *i eat chinese food* </s>**))** = **log(P(***i|<s>***)** x **P(***eat|i***)** x **P(***chinese|eat***)** x **P(***food|chinese***)** x **P(**</s>|food**))**

= log(0.25**)** + **log(**0.0036**)** + **log(**0.021**)** + **log(**0.52**)** + **log(**0.68**)**

= -11.92

Google n-gram

https://books.google.com/ngrams/

© Jixing Li ... and **1e-100**

A better model of a text is one that assigns a higher probability to the word that actually occurs.

I always order pizza with cheese and \blacksquare

The **Shannon Game** again:

Evaluation: How good is our model?

pepperoni 0.1 anchovies **0.01** ... fried rice **0.0001**

mushrooms **0.08**

Extrinsic evaluation of N-gram models

Best evaluation for comparing models A and B:

- Put each model in a task
	- spelling corrector, speech recognizer, machine translation system
- Run the task, get an accuracy for A and for B
	- How many misspelled words corrected properly
	- How many words translated correctly
- Compare accuracy for A and B

Intrinsic evaluation of N-gram models

- Extrinsic evaluation is time-consuming
	- can take days or weeks
- So we sometimes use intrinsic evaluation: **perplexity**
- Bad approximation
	- unless the test data looks just like the training data
	- So generally only useful in pilot experiments

Perplexity

Perplexity is the inverse probability of the test sequence, normalized by the number of words:

PP(*a pile of shaving cream***)**

$$
= 5 \sqrt{\mathbf{P}(a \text{ pile of showing cream})}
$$

 $\approx 5 \left| \frac{1}{R(s)R(s)|s|s} \frac{1}{R(s)R(s)|s|s} \right|$ **P(***a***)P(***pile|a***)P(***of|pile***)P(***shaving|of***)P(***cream|shaving***)**

$$
PP(W) = P(w_1, w_2, w_3, ... w_n)^{-\frac{1}{n}} = n \sqrt{P(w_1, w_2, w_3, ... w_n)}
$$

= $n \sqrt{\prod_{i=1}^{n} P(w_1, w_2, w_3, ... w_n)} \approx n \sqrt{\prod_{i=1}^{n} \frac{1}{P(w_i|w_{i-1})}}$

Lower perplexity = better model

Training 38 million words, test 1.5 million words,WSJ

To do

• **Leave a comment for Lecture 3!**

https://jixing-li.github.io/comments.html

- Do HW2
- Optional reading: **NTLK** Ch2:2.4; **SLP** Ch3.1-3.2.