

Department of Linguistics and Translation

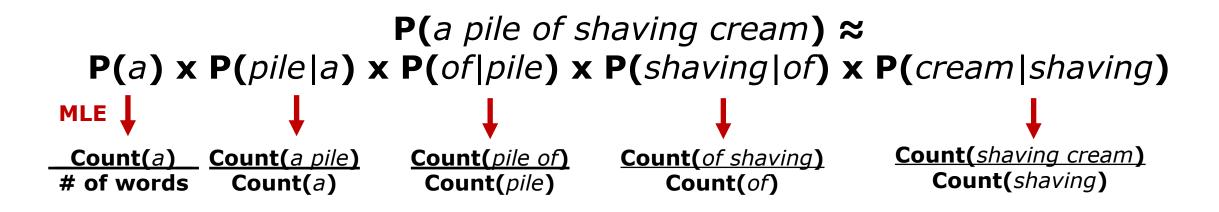
香港城市大學 City University of Hong Kong

Computational Linguistics LT3233

Jixing Li Lecture 4: Context-Free Grammars

Slides adapted from Edward Stabler, Michael Collins

© Jixing Li


Lecture plan

- Syntax 101
- What are context-free grammars?
- Top-down recognition
- Short break (15 mins)
- Hands-on exercises

N-grams review

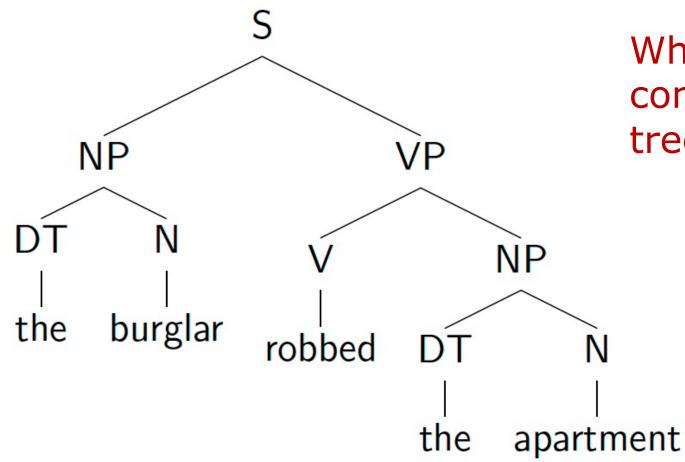
Bigram model: Condition on the previous word:

$$\mathsf{P}(w_1, w_2, w_3, \dots, w_n) \approx \prod_{i=1}^n \mathsf{P}(w_i | w_{i-1})$$

 \rightarrow Can extend to trigrams, 4-grams, 5-grams, etc.

Languages are not Markovian

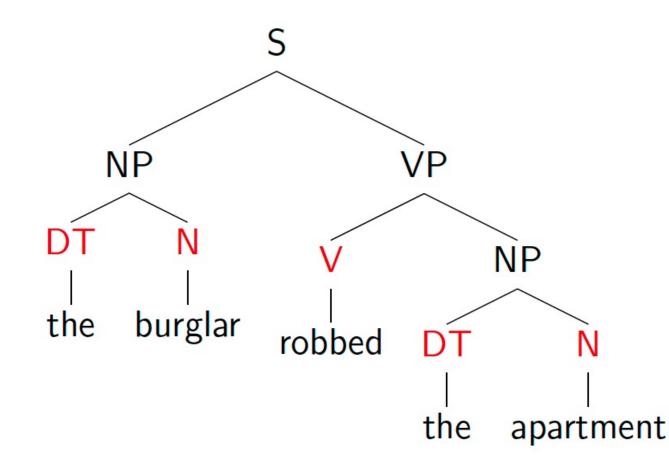
N-gram models are insufficient models of language



The bulldogs that are fought by the bulldogs that the bulldogs fight, fight.

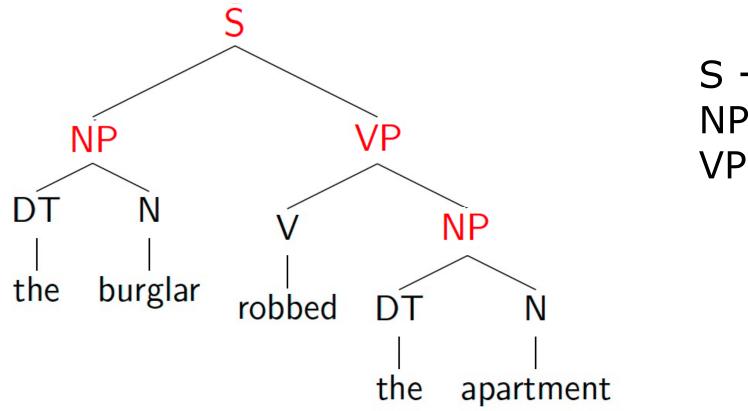
→ long-distance dependencies

Syntactic structure


"the burglar robbed the apartment"

What information is conveyed by a syntactic tree?

Trees visualize parts of speech


DT: determiner; N: noun; V: verb

DT \rightarrow the N \rightarrow burglar | apartment V \rightarrow robbed

Trees visualize constituency

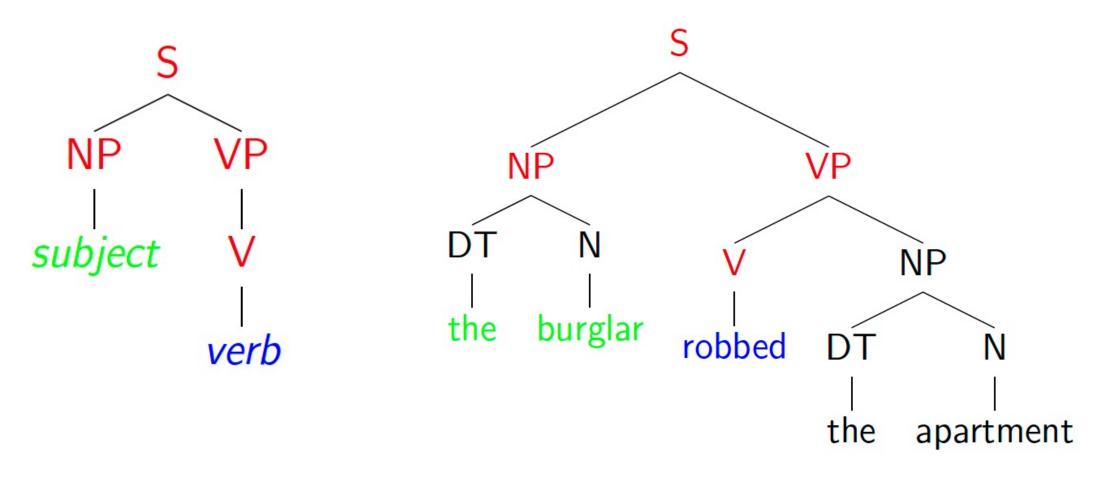
S: Sentence; NP: noun phrase; VP: verb phrase;

 $S \rightarrow NP VP$ NP $\rightarrow DT N$ VP $\rightarrow V NP$

Constituency

Example noun phrases:

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn


NPs appear in similar syntactic environments, i.e., before a verb:

```
three parties from Brooklyn arrive...
a high-class spot such as Mindy's attracts...
the Broadway coppers love...
they sit
```

Individual words in an NP may not occur before a verb:

*from *arrive*... *as *attracts*... *the *is*... *spot sat...

Trees visualize grammatical relationships

'the burglar' is the subject of 'robbed'

Context-free grammars

Context-free grammars (CFG) are also called **Phrase-Structure Grammars.** The idea of basing a grammar on constituent structures is formalized by Chomsky (1956)

A CFG consists of **a set of rules** and **a lexicon** of words and symbols

start symbol	$S \rightarrow NP VP$ NP $\rightarrow DT N$ VP $\rightarrow V NP$	non-terminal symbols
	DT \rightarrow the V \rightarrow robbed N \rightarrow burglar apartment	terminal symbols
alternate possible expansions		

Context-free grammars

The **formal language** defined by a CFG is the set of strings that are derivable from the start symbol.

LO: S → NP VP NP → DT N VP → V NP DT → the V → robbed

$N \rightarrow burglar | apartment$

Grammatical:

the burglar robbed the apartment $[_{S} [_{NP} [_{DT} the] [_{NP} burglar]] [_{VP} [_{V} robbed] [_{NP} [_{DT} the] [_{N} apartment]]]]$

the apartment robbed the burglar [$_{S}$ [$_{NP}$ [$_{DT}$ the] [$_{NP}$ apartment]] [$_{VP}$ [$_{V}$ robbed] [$_{NP}$ [$_{DT}$ the] [$_{N}$ burglar]]]]

Ungrammatical:

* robbed the apartment the burglar

Formal definition of context-free grammar

- *N* a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from *N*)
- *R* a set of **rules** or productions, each of the form $A \rightarrow \beta$, where *A* is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)^*$
- *S* a designated **start symbol** and a member of *N*

Capital letters like A, B, and SNon-terminalsSThe start symbolLower-case Greek letters like α , β , and γ Strings drawn from $(\Sigma \cup N)^*$ Lower-case Roman letters like u, v, and wStrings of terminals

Formal language

Hopcroft and Ullman (1979):

if $A \to \beta$ is a production of *R* and α and γ are any strings in the set $(\Sigma \cup N)^*$, then we say that $\alpha A \gamma$ directly derives $\alpha \beta \gamma$, or $\alpha A \gamma \Rightarrow \alpha \beta \gamma$.

Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be strings in $(\Sigma \cup N)^*, m \ge 1$, such that

$$\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, \ldots, \alpha_{m-1} \Rightarrow \alpha_m$$

We say that α_1 derives α_m , or $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$.

$$\mathscr{L}_G = \{ w | w \text{ is in } \Sigma * \text{ and } S \stackrel{*}{\Rightarrow} w \}$$

Example

'the dog laughs' $S \rightarrow NP VP$ $NP \rightarrow DT N$ $DT \rightarrow the$ $N \rightarrow dog$ $VP \rightarrow VB$ $VB \rightarrow laughs$

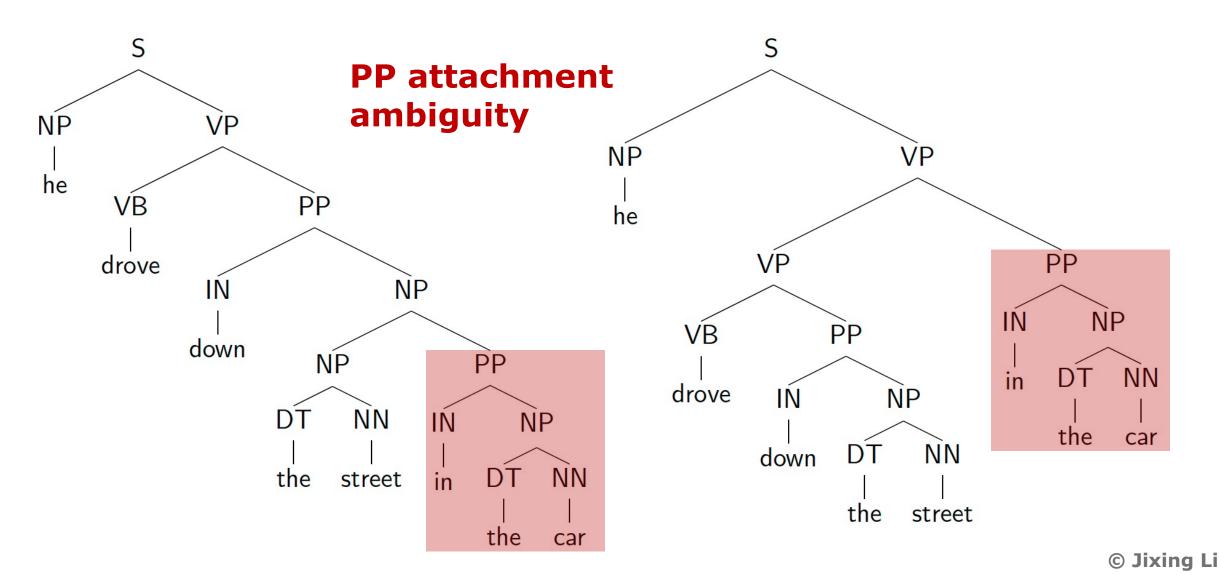
Derivation S NP VP DT N VP the N VP the dog VP the dog VB the dog laughs

Rules used $S \rightarrow NP VP$ $NP \rightarrow DT N$ $DT \rightarrow the$ $N \rightarrow dog$ $VP \rightarrow VB$ $VB \rightarrow laughs$

Problems of CFG

- Cannot express many syntactic phenomena, e.g., subject-verb agreement, wh-movement, etc.
- Lack headedness: The head is the word in the phrase that is grammatically the most important. Heads are passed up the parse tree.
 - N is the head of an NP
 - V is the head of a VP
 - P is the head of PP

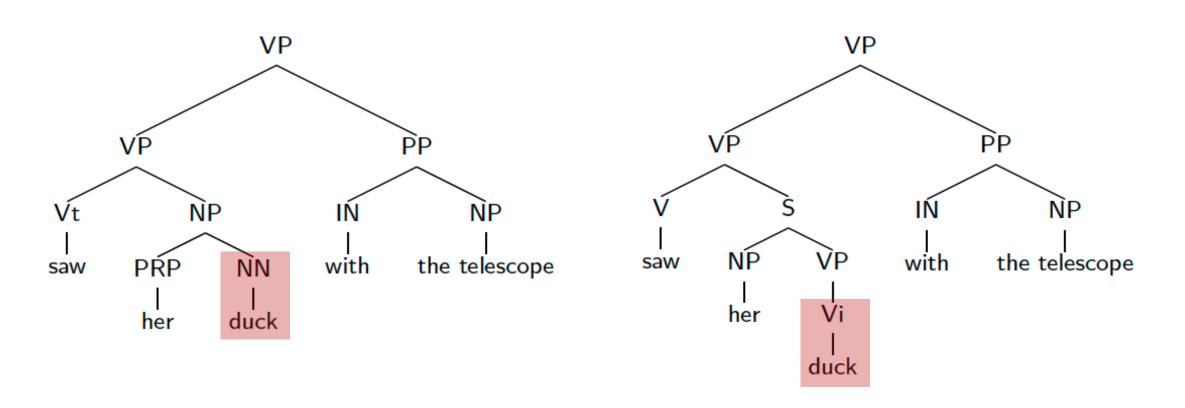
Nevertheless, CFG is a good starting point.


Recognizer

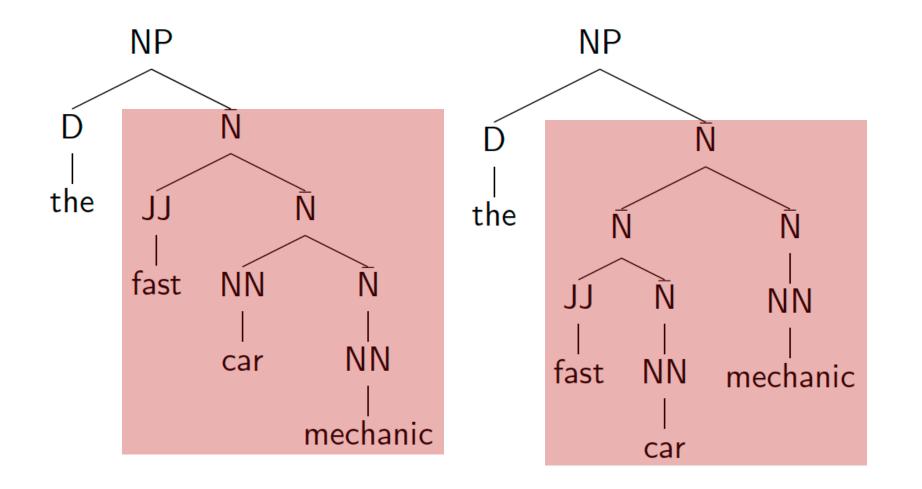
The problem of recognition: Given a grammar and a string of words, return *True* if the string has a derivation and *False* otherwise.

Derivation 'the dog laughs' S $S \rightarrow NP VP$ NP VP $NP \rightarrow DT N$ DT N VP \rightarrow True $DT \rightarrow the$ the N VP $N \rightarrow dog$ the dog VP $VP \rightarrow VB$ $VB \rightarrow laughs$ the dog VB the dog laughs

Ambiguity


'He drove down the street in the car.'

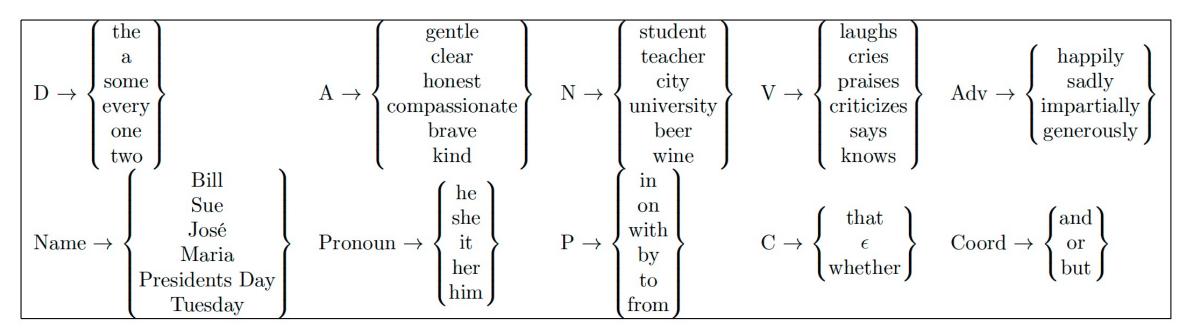
Source of ambiguity


Part-of-speech ambiguity

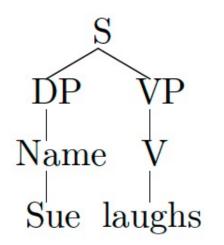
- NN \rightarrow duck
- Vi \rightarrow duck

Source of ambiguity

Noun premodifier ambiguity


© Jixing Li

Rules:


$$\begin{array}{cccc} S \rightarrow DP & VP \\ NP \rightarrow \begin{pmatrix} (D) & NP \\ Name \\ Pronoun \\ NP \rightarrow N & (PP) \end{array} \end{array} VP \rightarrow V (DP) \begin{pmatrix} \left\{ \begin{array}{c} PP \\ CP \\ VP \\ \end{array} \right\} \end{pmatrix} NP \rightarrow V (DP) \begin{pmatrix} \left\{ \begin{array}{c} PP \\ CP \\ VP \\ \end{array} \right\} \end{pmatrix} NP \rightarrow N (PP) \end{array} VP \rightarrow V (DP) \begin{pmatrix} \left\{ \begin{array}{c} PP \\ CP \\ VP \\ \end{array} \right\} \end{pmatrix} NP \rightarrow N (PP) \end{array} VP \rightarrow P (DP) \\ AP \rightarrow A & (PP) \\ CP \rightarrow C & S \\ AdvP \rightarrow Adv \end{array} VP \rightarrow AdvP & AP \\ AP \rightarrow AdvP & AP \end{array}$$

 $\label{eq:alpha} \begin{array}{l} \alpha \rightarrow \alpha \mbox{ Coord } \alpha \\ (\mbox{for } \alpha = \mbox{D,V,N,A,P,C,Adv,VP,NP,DP,AP,PP,AdvP,S,CP}) \end{array}$

Lexicon:

Derive: 'Sue laughs'

step	predicted	input	_ J
0.	S	Sue l	aughs
1.	DP VP	Sue l	aughs
step	predicted		input
0.	S		Sue laughs
1.	DP VP		Sue laughs
2a.	D NP VP		Sue laughs
2b.	NP VP		Sue laughs
2c.	Name VP		Sue laughs
2d.	Pronoun VP		Sue laughs
2e.	DP Coord DI	P VP	Sue laughs

expand: DP

step	predicted
0.	S
1.	DP VP
2a.	D NP VP
2b.	NP VP
2c.	Name VP
2d.	Pronoun VP
2e.	DP Coord DP
3aa.	D Coord D NP
3ab.	the NP VP
0	ND ID
3ac.	a NP VP
3ac. 3ad.	a NP VP some NP VP
3ad.	some NP VP
3ad. 3ae.	some NP VP every NP VP

input Sue laughs Sue laughs

VP

VP

3aa.	D Coord D NP VP	
4aaa.	D Coord D Coord D NP VP	Sue laughs
4aab.	the Coord D NP VP	Sue laughs
4aab.	a Coord D NP VP	Sue laughs
4aab.	some Coord D NP VP	Sue laughs
4aab.	every Coord D NP VP	Sue laughs
4aab.	one Coord D NP VP	Sue laughs
4aab.	two Coord D NP VP	Sue laughs

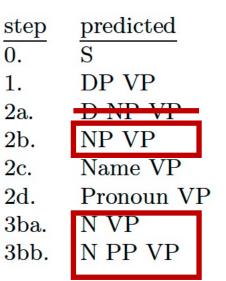
The process will never terminate!

Left recursion: category X can contain another category X as its first element

Remove left recursion:

	(PP)	$NP \rightarrow AP NP$
$S \rightarrow DP VP$	$VP \rightarrow V (DP) (\langle CP \rangle)$	$\frac{\text{NP}}{\text{NP}} \rightarrow \frac{\text{NP}}{\text{PP}} \frac{\text{PP}}{\text{PP}}$
$DP \rightarrow \begin{cases} (D) & NP \\ Name \\ Pronoun \end{cases}$	(VP)	$NP \rightarrow NP CP$
$DP \rightarrow \{ Name \} $	$PP \rightarrow P (DP)$	$VP \rightarrow AdvP VP$
(Pronoun) NP \rightarrow N (PP)	$AP \rightarrow A (PP)$	$VP \rightarrow VP PP$
$\mathbf{N}\mathbf{\Gamma} \to \mathbf{N} \ (\mathbf{\Gamma}\mathbf{\Gamma})$	$CP \rightarrow C S$	$AP \rightarrow AdvP AP$
	$AdvP \rightarrow Adv$	

$$\alpha \rightarrow \alpha \text{ Coord } \alpha$$


(for α =D,V,N,A,P,C,Adv,VP,NP,DP,AP,PP,AdvP,S,CP)

0.

1.

step	predicted
0.	S
1.	DP VP
2a.	D NP VP
2b.	NP VP
2c.	Name VP
2d.	Pronoun VP
3aa.	the NP VP
3ab.	a NP VP
3ac.	some NP VP
3ad.	every NP VP
3ae.	one NP VP
3af.	two NP VP

input Sue laughs Sue laughs

$N \rightarrow \left\{ \right.$	student
	teacher
	city
	university (
	beer
	wine
	> 、 /

input	st
Sue laughs	0.
Sue laughs	1.
Sue laughs	28
Sue laughs	$2\mathbf{k}$
Sue laughs	20
Sue laughs	20
Sue laughs	30
Sue laughs	30
	30
	30

step	predicted
0.	S
1.	DP VP
2a.	D NP VP
2b.	ND VD
2c.	Name VP
2d.	Pronoun VP
3ca.	Bill VP
3ca. 3cb.	Bill VP Sue VP
3cb.	Sue VP
3cb. 3cc.	Sue VP José VP
3cb. 3cc. 3cd.	Sue VP José VP Maria VP

input Sue laughs Sue laughs

scan: Sue VP 4cb'

Sue laughs

4cb'	VP	
4cb'a	V	
4cb'b	V DP	
4cb'c	V PP	
4cb'd	V CP	
4cb'e	V VP	
4cb'f	V DP PP	
4cb'g	V DP CP	
4cb'h	V DP VP	
4cb'aa	laughs	

scan: laughs

4cb' VP

Sue laughs

Problems of top-down parsing

- Slow: **expand** requires looping through the whole list of rules
- Non-terminating with left-recursion

To do

- Do HW3
- Optional reading: NLTK Ch8:1-3; SLP Ch12.1-4;
 Stabler Ch1