

Department of Linguistics and Translation

香港城市大學 City University of Hong Kong

Computational Linguistics LT3233

Jixing Li Lecture 8: Feedforward neural networks

Slides adapted from Dan Jurafsky

Lecture plan

- Neural network unit
- The XOR problem
- Feedforward neural networks
- Short break (15 mins)
- Hands-on exercises

This is in your brain

Neural unit

Take weighted sum of inputs, plus a bias

$$z = b + \sum_{i} w_{i} x_{i}$$
$$z = w \cdot x + b$$

Apply a nonlinear activation function f:

$$y = a = f(z)$$

Non-linear activation functions

We're already seen the sigmoid for logistic regression:

What is the output y for the input x:
x = [0.5,0.6,0.1]

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$= \frac{1}{1 + e^{-(.5*.2 + .6*.3 + .1*.9 + .5)}} = \frac{1}{1 + e^{-0.87}} = .70$$

- -

Non-linear function besides sigmoid

The XOR problem

Can neural units compute simple functions of input?

	AND		OR			XOR		
x 1	x 2	у	x 1	x 2	у	x 1	x2	y
0	0		0			0	0	0
0	1	0	0	1	1	0	1	1
1	0	0	1	0	1	1	0	
1	1	1	1	1	1	1	1	0

Perceptrons

A very simple neural unit Bi

 $\begin{array}{l} f \quad 0, \quad \text{if } w \cdot x + b \leq 0 \\ \quad > 0 \end{array}$

XOR with perceptrons?

$$y = \begin{cases} 0, & \text{if } w \cdot x + b < 0 \\ 1, & \text{if } w \cdot \end{cases}$$

Perceptrons are linear classifiers

Perceptron equation given x1 and x2, is the equation of a line

 $w_1x_1 + w_2x_2 + b = 0 \rightarrow x_2 = (-w_1/w_2)x_1 + (-b/w_2)$

This line acts as a **decision boundary**

Solution to the XOR problem

A layered network of unit:

-	XOR			
x 1	x2	y	h1	h2
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	0	2	1

Activation function: ReLU y = max(z, 0)

The hidden representation h

A layered network of unit:

a) The original *x* space

b) The new (linearly separable) h space

hidden layers learn to form useful representations

The hidden representation h

A layered network of unit:

a) The original *x* space

b) The new (linearly separable) h space

hidden layers learn to form useful representations

Feedforward neural networks

Two-layer network with scalar output

Feedforward neural networks

Two-layer network with softmax output

The softmax function

Turns a vector $z = [z_1, z_2, ..., z_k]$ of k arbitrary values into probabilities

$$\operatorname{softmax}(z_{i}) = \frac{\exp(z_{i})}{\sum_{j=1}^{k} \exp(z_{j})} \quad 1 \le i \le k$$
$$\operatorname{softmax}(z) = \left[\frac{\exp(z_{1})}{\sum_{i=1}^{k} \exp(z_{i})}, \frac{\exp(z_{2})}{\sum_{i=1}^{k} \exp(z_{i})}, \dots, \frac{\exp(z_{k})}{\sum_{i=1}^{k} \exp(z_{i})}\right]$$

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

softmax(z) = [0.055, 0.090, 0.0067, 0.10, 0.74, 0.010]

Example

chinese_name major		gender n1_male		n2_male n1_uniqueness		n2_uniqueness	
林加敏	LLA	F	0.442	-0.562	2.795	2.087	
x = [0.442, -0.562, 2.795, 2.087]							

To do

• Optional reading: **SLP** Ch7.1-7.3