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Lecture plan
• Overview of feedforward neural networks
• Backpropagation and computational graphs
• Implementing feedforward neural networks from scratch
• Short break (15 mins)
• Hands-on exercises

Ask for help if you need it:
• office hour: 3-5 pm Tuesdays at LI-5459
• Zoom meetings: by schedule
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Feedforward neural networks
Two-layer network with scalar output

hidden units

input layer

output layer

W2

W1

b1

z2 = 𝑊2𝑎1 + 𝑏2
𝑎2 = 𝜎(𝑧2)

a1 = ReLu(𝑧1)
𝑧1 = 𝑊1𝑥 + 𝑏1b2

x
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Example

x	=	[0.442,-0.562,2.795,2.087]
W1	=	[[1,3,2,4],

[2,1,4,3]]
W2	=	[-1,2]
b1	=	[1,-1],	b2	=	2
z1	=W1x+b1
a1	=	ReLU(z1)	=	max(z1,0)
z2 =W2a1+b2
a2	=	𝜎(z2)=1/(1+e-z2)

W2

W1 b1

z2 = 𝑊2𝑎1 + 𝑏2
𝑎2 = 𝜎(𝑧2)

a1 = ReLu(𝑧1)
𝑧1 = 𝑊1𝑥 + 𝑏1

b2

x
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Example
x	=	[0.442,-0.562,2.795,2.087]
W1	=	[[1,3,2,4],

[2,1,4,3]]
W2	=	[-1,2]
b1	=	[1,-1],	b2	=	2
z1	=W1x+b1
a1	=	ReLU(z1)	=	max(z1,0)
z2 =W2a1+b2
a2	=	𝜎(z2)=1/(1+e-z2)

W1
0.442
-0.562
2.795
2.087

x

x

1,3,2,4
2,1,4,3

b1

+
1
-1

= 1x0.442	+	3x-0.562	+	2x2.795	+	4x2.087
2x0.442	+	1x-0.562	+	4x2.795	+	3x2.087

= 12.694
17.763

+
1
-1

+
1
-1

= 13.694
16.763

z1

z1

z1

a1 =	ReLU(z1)	=	max(z1,0)	=	z1
z2 =W2a1+b2	=	[-1,2]	x																					+	2	=	-1x13.694	+	2x16.763	+2	=	21.832

a2	=	1/(1+e-z2)	=	1/(1+e-21.832)	=	0.99

13.694
16.763
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Compute the parameters

W2

W1
b1

z2 = 𝑊2𝑎1 + 𝑏2
𝑎2 = 𝜎(𝑧2)

a1 = ReLu(𝑧1)
𝑧1 = 𝑊1𝑥 + 𝑏1 b2

How to know the weights (W1,W2) and biases (b1,b2)?
àthrough error backpropagation

which relies on computation graphs

W1
0.442
-0.562
2.795
2.087

x

x

1,3,2,4
2,1,4,3

b1

+
1
-1

x
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Gradient descent in logistic regression
[卓, 琳, Cheuk, Lam, LLA] à x	=	[0.5,	0.7,	0.5,	0.6,	0.8],	y=1

1. initialize w and b, set η
w	= [0,	0,	0,	0,	0],	b	=	0,	η =	0.1

2. compute D𝒚
F𝑦 = σ(wx +	b)	=	0.5

3. compute the gradients for w and b
Gw =	( F𝑦 -y)x	=	(0.5– 1)[0.5,	0.7,	0.5,	0.6,	0.8] =	[-0.25,	-0.35,	-0.25,	-0.3,	-0.4]
Gb	=	 F𝑦 -y =	0.5– 1	=	-0.5

4. update w and b
wt+1	=	wt – ηGw =	[0,	0,	0,	0,	0]	– 0.1*	[-0.25,	-0.35,	-0.25,	-0.3,	-0.4]	

=	[0.025,	0.035,	0.025,	0.03,	0.04]
bt+1	=	bt – ηGb	=	0- 0.1*(-0.5)	=	0.05
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Backpropagation
x =	[0.442,-0.562,2.795,2.087],	y=1

1. initialize W1,	W2 and b1,	b2, set η
W1	= [[1,1,1,1],

[1,1,1,1]]
W2 = [1,1]
b1=	[1,1]
b2=[1]
η =	0.1

2. forward propagation
z1 = W1x + b1
a1 = ReLU(z1) = max(z1,0)
z2 = W2a1 + b2
a2 = 𝜎(z2) = 1/(1 + e-z2)

3. backpropagation
GW1
GW2
Gb1
Gb2

4. update W1,	W2 and b1,	b2	
W1t+1	=	W1t – ηGW1	
W2t+1	=	W2t – ηGW2
b1t+1	=	b1t – ηGb1
b2t+1	=	b2t – ηGb2
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Gradient descent (again)
Minimize loss: Given the current w, move w in the
reverse direction from the slope of the function

w

Loss

0
w1 wmin

slope of loss at w1 
is negative

(goal)

one step
of gradient

descent

So we'll move positive

concept of 
derivative

https://www.khanacademy.org/math/ap-calculus-ab/ab-differentiation-1-new/ab-2-1/v/derivative-as-a-concept?modal=1


© Jixing Li

Computation graph
A computation graph represents the process of computing 
a mathematical expression

e=a+d

d = 2b L=ce

a

b

c
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Example
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Example

We want: 

The derivative !"
!#

tells us how much a small change in a
affects L. 
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Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

∂LCE

∂wk
= ( {y = k}� p(y = k|x))xk

=

 
{y = k}� exp(wk · x+bk)PK

j=1 exp(w j · x+b j)

!
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.

7.4.3 Computation Graphs
A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2⇤b
e = a+d
L = c⇤ e

We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = �2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,�2) = �10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.

7.4.4 Backward differentiation on computation graphs
The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L

∂a , ∂L
∂b , and ∂L

∂c . The derivative ∂L
∂a , tells us how

much a small change in a affects L.
Backwards differentiation makes use of the chain rule in calculus. Suppose wechain rule

are computing the derivative of a composite function f (x) = u(v(x)). The derivative
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The chain rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x)))  

14 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

e=a+d

d = 2b L=ce

3

1

-2

e=5

d=2 L=-10

forward pass

a

b

c

Figure 7.10 Computation graph for the function L(a,b,c)= c(a+2b), with values for input
nodes a = 3, b = 1, c =�2, showing the forward pass computation of L.

of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
dx

=
du
dv

· dv
dx

(7.23)

The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:

d f
dx

=
du
dv

· dv
dw

· dw
dx

(7.24)

Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

(7.26)

Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Example

We want: 
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Or for a network with one hidden layer and softmax output, we could use the deriva-
tive of the softmax loss from Eq. ??:

∂LCE

∂wk
= ( {y = k}� p(y = k|x))xk

=

 
{y = k}� exp(wk · x+bk)PK

j=1 exp(w j · x+b j)

!
xk (7.22)

But these derivatives only give correct updates for one weight layer: the last one!
For deep networks, computing the gradients for each weight is much more complex,
since we are computing the derivative with respect to weight parameters that appear
all the way back in the very early layers of the network, even though the loss is
computed only at the very end of the network.

The solution to computing this gradient is an algorithm called error backprop-
agation or backprop (Rumelhart et al., 1986). While backprop was invented spe-error back-

propagation
cially for neural networks, it turns out to be the same as a more general procedure
called backward differentiation, which depends on the notion of computation
graphs. Let’s see how that works in the next subsection.
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A computation graph is a representation of the process of computing a mathematical
expression, in which the computation is broken down into separate operations, each
of which is modeled as a node in a graph.

Consider computing the function L(a,b,c) = c(a+2b). If we make each of the
component addition and multiplication operations explicit, and add names (d and e)
for the intermediate outputs, the resulting series of computations is:

d = 2⇤b
e = a+d
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We can now represent this as a graph, with nodes for each operation, and di-
rected edges showing the outputs from each operation as the inputs to the next, as
in Fig. 7.10. The simplest use of computation graphs is to compute the value of
the function with some given inputs. In the figure, we’ve assumed the inputs a = 3,
b = 1, c = �2, and we’ve shown the result of the forward pass to compute the re-
sult L(3,1,�2) = �10. In the forward pass of a computation graph, we apply each
operation left to right, passing the outputs of each computation as the input to the
next node.
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The importance of the computation graph comes from the backward pass, which
is used to compute the derivatives that we’ll need for the weight update. In this
example our goal is to compute the derivative of the output function L with respect
to each of the input variables, i.e., ∂L
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of f (x) is the derivative of u(x) with respect to v(x) times the derivative of v(x) with
respect to x:

d f
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du
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· dv
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The chain rule extends to more than two functions. If computing the derivative of a
composite function f (x) = u(v(w(x))), the derivative of f (x) is:
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Let’s now compute the 3 derivatives we need. Since in the computation graph
L = ce, we can directly compute the derivative ∂L

∂c :

∂L
∂c

= e (7.25)

For the other two, we’ll need to use the chain rule:

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
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Eq. 7.26 thus requires five intermediate derivatives: ∂L
∂e , ∂L

∂c , ∂e
∂a , ∂e

∂d , and ∂d
∂b ,

which are as follows (making use of the fact that the derivative of a sum is the sum
of the derivatives):

L = ce :
∂L
∂e

= c,
∂L
∂c

= e

e = a+d :
∂e
∂a

= 1,
∂e
∂d

= 1

d = 2b :
∂d
∂b

= 2

In the backward pass, we compute each of these partials along each edge of the graph
from right to left, multiplying the necessary partials to result in the final derivative
we need. Thus we begin by annotating the final node with ∂L

∂L = 1. Moving to the
left, we then compute ∂L

∂c and ∂L
∂e , and so on, until we have annotated the graph all

the way to the input variables. The forward pass conveniently already will have
computed the values of the forward intermediate variables we need (like d and e)
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Backprop on a two-layer network
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to compute these derivatives. Fig. 7.11 shows the backward pass. At each node we
need to compute the local partial derivative with respect to the parent, multiply it by
the partial derivative that is being passed down from the parent, and then pass it to
the child.
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Figure 7.11 Computation graph for the function L(a,b,c) = c(a+2b), showing the back-
ward pass computation of ∂L

∂a , ∂L
∂b , and ∂L

∂c .

Backward differentiation for a neural network

Of course computation graphs for real neural networks are much more complex.
Fig. 7.12 shows a sample computation graph for a 2-layer neural network with n0 =
2, n1 = 2, and n2 = 1, assuming binary classification and hence using a sigmoid
output unit for simplicity. The function that the computation graph is computing is:

z[1] = W [1]x+b[1]

a[1] = ReLU(z[1])

z[2] = W [2]a[1] +b[2]

a[2] = s(z[2])

ŷ = a[2] (7.27)

The weights that need updating (those for which we need to know the partial
derivative of the loss function) are shown in orange. In order to do the backward
pass, we’ll need to know the derivatives of all the functions in the graph. We already
saw in Section ?? the derivative of the sigmoid s :

ds(z)
dz

= s(z)(1�s(z)) (7.28)

We’ll also need the derivatives of each of the other activation functions. The
derivative of tanh is:

d tanh(z)
dz

= 1� tanh2(z) (7.29)

The derivative of the ReLU is

d ReLU(z)
dz

=

⇢
0 f or z < 0
1 f or z � 0 (7.30)16
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0 f or x < 0
1 f or x � 0 (7.30)
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Starting off the backward pass
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To do
• Optional reading: SLP Ch7.6
• Tutorial on backpropagation:
https://cs231n.github.io/optimization-2/
• Gentle introduction on derivatives:
https://www.khanacademy.org/math/ap-calculus-ab/ab-
differentiation-1-new

https://cs231n.github.io/optimization-2/

