
© Jixing Li

Language and its Applications
LT5903

Jixing Li
Lecture 10: Computational Linguistics

@Jixing Li

Lecture plan
• Neurolinguistics review
• Computational linguistics and natural language
processing
• Tokenization, POS tagging
• CFG and parsing
• Word embeddings
• Short break (15 mins)
• Group discussion on HW10

@Jixing Li

Neurolinguistics review
neurolinguistics: the study of how language is represented in the brain
research methods: EEG, MEG, ECoG, fMRI, etc

@Jixing Li

Computational linguistics

computational linguistics (CL): employs computational
methods to understand properties of human language.

natural language processing (NLP): aims to develop
methods for solving practical problems involving language

NLP tasks: information extraction, automatic speech
recognition, machine translation, sentiment analysis,
question answering, and summarization.

@Jixing Li

Every NLP task requires …
• Tokenizing (segmenting) words

• Normalizing word format

• Segmenting sentences

e.g., lower case, remove punctuation

@Jixing Li

Example: Getting web pages

@Jixing Li

Part-of-speech (POS) tagging
• POS tagging: assign a POS tag to each word,
symbol, punctuations in a sentence.

@Jixing Li

Context-free grammars
Context-free grammars (CFG) are also called Phrase-Structure
Grammars. The idea of basing a grammar on constituent structures
is formalized by Chomsky (1956)

A CFG consists of a set of rules and a lexicon of words and symbols

S à NP VP
NP à DT N
VP à V NP
DT à the
V à robbed
N à burglar | apartment

non-terminal symbols

terminal symbols

start symbol

alternate possible expansions

@Jixing Li

Top-down parsing
Stack
S
NP VP
DT N VP
the N VP
N VP
dog VP
VP
V
laughs
[]

Operation
expand S à NP VP
expand NP à DT N
expand DT à the
scan the
expand N à dog
scan dog
expand VP à V
expand V à laughs
scan laughs

CFG:
S à NP VP
NP à DT N
DT à the
N à dog
VP à V
V à laughs

Input:
‘the dog laughs’
‘the dog laughs’
‘the dog laughs’
‘the dog laughs’
‘dog laughs’
‘dog laughs’
‘laughs’
‘laughs’
‘laughs’
[]

@Jixing Li

Bottom-up parsing
Stack
the
DT
DT dog
DT N
NP
NP laughs
NP V
NP VP
S

Operation
shift the
reduce DT à the
shift dog
reduce N à dog
reduce NP à DT N
shift laughs
reduce V à laughs
reduce VP à V
reduce S à NP VP

CFG:
S à NP VP
NP à DT N
DT à the
N à dog
VP à V
V à laughs

Input:
‘the dog laughs’
‘dog laughs’
‘dog laughs’
‘laughs’
‘laughs’
‘laughs’
[]
[]
[]

@Jixing Li

Word meaning: Attributes

Word Vision Bright Dark Color Pattern Large Small

ant 3.5484 0.3548 3.5806 3.9355 1.9355 0.0968 5.871

bicycle 5.3 1.1667 0.6333 1 2.1667 1.7 1.2667

farm 5.7097 1.1935 0.5161 1.7419 1.8065 5.0645 0.129

farmer 4.1786 0.5 0.3214 0.4286 0.6071 1.4286 0.6786

green 4.2963 1.7778 1 5.9259 1.5926 0.1852 0.1111

red 5 3.2857 1.25 6 1.4643 0.1071 0.0357

rocket 5.5 2.9333 0.7333 1.8667 1.9 5.6 0.2333

trust 0.3793 0.1379 0.0345 0.3103 0.2069 0.3103 0.069

Binder et al. (2016): 65 dimensions, scale: 0-6

@Jixing Li

Word meaning: Co-occurrence
Wittgenstein (1953): The meaning of a word is its use
in the language

Harris (1954): If A and B have almost identical
environments we say that they are synonyms.

Firth (1957): A word is characterized by the company it
keeps.

@Jixing Li

Example: ongchoi
Suppose you see these sentences:

ongchoi is delicious sautéed with garlic.
ongchoi is superb over rice
ongchoi leaves with salty sauces

And you've also seen these:
…spinach sautéed with garlic over rice
chard stems and leaves are delicious
collard greens and other salty leafy greens

Conclusion:
ongchoi is a leafy green like spinach, chard, or collard greens

We could conclude this based on words like "leaves" and
"delicious" and "sauteed"

@Jixing Li

Word2Vec: skip-gram training
Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
Assigns each pair a probability:

P(+|w, c): c is in the context of word w
P(−|w, c) = 1 − P(+|w, c)

@Jixing Li

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 c3 c4

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

20 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

this context window is to the target word. The probability is based on applying the
logistic (sigmoid) function to the dot product of the embeddings of the target word
with each context word. We could thus compute this probability if only we had
embeddings for each target word and context word in the vocabulary. Let’s now turn
to learning these embeddings (which is the real goal of training this classifier in the
first place).

6.8.2 Learning skip-gram embeddings
Word2vec learns embeddings by starting with an initial set of embedding vectors
and then iteratively shifting the embedding of each word w to be more like the em-
beddings of words that occur nearby in texts, and less like the embeddings of words
that don’t occur nearby. Let’s start by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

This example has a target word t (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
t c
apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
t c t c
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram uses more negative examples than positive examples (with the ratio between
them set by a parameter k). So for each of these (t,c) training instances we’ll create
k negative samples, each consisting of the target t plus a ‘noise word’. A noise word
is a random word from the lexicon, constrained not to be the target word t. The
right above shows the setting where k = 2, so we’ll have 2 negative examples in the
negative training set � for each positive example t,c.

The noise words are chosen according to their weighted unigram frequency
pa(w), where a is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set a = .75, i.e. use the
weighting p

3
4 (w):

Pa(w) =
count(w)a

P
w0 count(w0)a (6.32)

Setting a = .75 gives better performance because it gives rare noise words slightly
higher probability: for rare words, Pa(w) > P(w). To visualize this intuition, it
might help to work out the probabilities for an example with two events, P(a) = .99
and P(b) = .01:

Pa(a) =
.99.75

.99.75 + .01.75 = .97

Pa(b) =
.01.75

.99.75 + .01.75 = .03 (6.33)

For each positive
example we’ll
take k negative
examples
(here, k=2)

Example

@Jixing Li

Learning the classifier

How to learn?
Gradient descent!

We’ll adjust the word weights
to
• make the positive pairs

more likely
• and the negative pairs less

likely,
• over the entire training set.

W

C

move apricot and jam closer,
increasing cpos z w

aardvark

move apricot and matrix apart
decreasing cneg1 z w

“…apricot jam…”

w

zebra

zebra

aardvark

jam

apricot

cpos

matrix

Tolstoy move apricot and Tolstoy apart
decreasing cneg2 z w

!
cneg1
cneg2

k=2

@Jixing Li

Computing word similarity: Cosine

The dot product tends to be high when the two vectors have large
values in the same dimensions
à a useful similarity metric between vectors

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

Normalized by the
length of the vector

-1: vectors point in opposite directions: dissimilar
+1: vectors point in same directions: similar
0: vectors are orthogonal

@Jixing Li

Cosine similarity: Example

cherry 6.76 2.42 1.22
digital 1.65 6.85 6.83

information 1.44 6.62 6.48

cos
�⃗� & 𝑤
�⃗� 𝑤

=
�⃗�
�⃗�
&
𝑤
𝑤

=
∑!"#$ 𝑣!𝑤!

∑!"#$ 𝑣!% ∑!"#$ 𝑤!%

cos 𝑐ℎ𝑒𝑟𝑟𝑦, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
6.76 ∗ 1.44 + 2.42 ∗ 6.62 + 1.22 ∗ 6.48

6.76% + 2.42% + 1.22% 1.44% + 6.62% + 6.48%
= 0.49

cos 𝑑𝑖𝑔𝑖𝑡𝑎𝑙, 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

=
1.65 ∗ 1.44 + 6.85 ∗ 6.62 + 6.83 ∗ 6.48

1.65% + 6.85% + 6.83% 1.44% + 6.62% + 6.48%
= 0.99

semantically-
related words
have higher
cosine similarity

@Jixing Li

Evaluating word embeddings

@Jixing Li

Against human judgement

word1 word2 similarity

vanish disappear 9.8
behave obey 7.3
belief impression 5.95
muscle bone 3.65
modest flexible 0.98
hole agreement 0.3

SimLex-999: Human rating on the similarity between 999 pairs of
words (scale: 0-10)

Calculate the
correlation between
the cosines of the
word embeddings
and the simlex-999
values

@Jixing Li

Huth et al (2016)
Against human brain data?

@Jixing Li

@Jixing Li

Against human brain data?

@Jixing Li

Against human brain data?

@Jixing Li

To do

Do HW10

Textbooks:
Jurafsky and Martin, Speech and Language Processing
https://web.stanford.edu/~jurafsky/slp3/
Bird et al. Natural Language Processing with Python
https://www.nltk.org/book/

Next lecture: File Ch10

https://web.stanford.edu/~jurafsky/slp3/
https://www.nltk.org/book/

