Department of

Linguistics and Translation
EHAHAS

City University of Hong Kong

Language and its Applications
LT5903

Jixing Li
Lecture 10: Computational Linguistics

© Jixing Li

Lecture plan

* Neurolinguistics review

« Computational linguistics and natural language
processing

» Tokenization, POS tagging
* CFG and parsing
 Word embeddings

» Group discussion on HW10

@Jixing Li

Neurolinguistics review

neurolinguistics: the study of how language is represented in the brain
research methods: EEG, MEG, ECoG, fMRI, etc

a Via higher-order frontal networks
10
Input from
—~ <«— other sensory
Y E modalities
°E
C < v
Qo o 1 Phonological network Bt rcentual netword
5 c Dorsal STG Mid-post STS i eg b
- (bilateral) (bilateral) : :
O ‘- i NNt L s S NI -
O S | !
= = - ; ‘
— Combinatorial network | Ventral stream Lexical interface
© 1 aMTG, alTS el pMTG, pITS | <
% E . b (Ieft dominant?) (weak left-hemisphere blas
5 3
wn
| =

.01
.001 0L . 1 10
Temporal resolution (s)

@Jixing Li

Computational linguistics

computational linguistics (CL): employs computational
methods to understand properties of human language.

natural language processing (NLP): aims to develop
methods for solving practical problems involving language

NLP tasks: information extraction, automatic speech

recognition, machine translation, sentiment analysis,
question answering, and summarization.

@Jixing Li

Every NLP task requires ...

» Tokenizing (segmenting) words

word tokenize("Computational Linguistics is fun!")

['Computational’', 'Linguistics', 'is', 'fun', '!']

« Normalizing word format e.g., lower case, remove punctuation

['computational’', 'linguistics', 'is', 'fun']

« Segmenting sentences

sent tokenize('Computational Linguistics is fun! Tokenization is easy.')

['Computational Linguistics is fun!', 'Tokenization is easy.']

@Jixing Li

Example: Getting web pages

get webpage

html = urlopen('https://www.hplovecraft.com/writings/texts/fiction/cc.aspx’)
get raw text

raw = BeautifulSoup(html).get text()

find the index where the relevant text starts

ind start = re.search('”0f such great powers', raw).start()
raw = raw[ind start:]

tokenization

tokens = word tokenize(raw)

remove punctuation

tokens = [t for t in tokens if t.isalpha()]

tokens lower = [t.lower() for t in tokens]

show the first 20 tokens

tokens lower[:20]

@Jixing Li

Part-of-speech (POS) tagging

« POS tagging: assign a POS tag to each word,
symbol, punctuations in a sentence.

sent = word tokenize('I saw a man with binoculars')
tokens pos = nltk.pos tag(sent, tagset="'universal')
tokens pos

Phrasal
Categories

[('T", '"PRON'),
('saw', 'VERB'),
(la' 'DET!) . -

(‘man’ r 'NOUN')’ /\Nlp t:\)t(:ec:;ries:

('with' ’ "ADP') ’ [DET ADJ NOUN VEIIRB No:UN POS
: | | ! ! l
('"binoculars', 'NOUN')] the happy girl eats candy

@Jixing Li

Context-free grammars

Context-free grammars (CFG) are also called Phrase-Structure
Grammars. The idea of basing a grammar on constituent structures
is formalized by Chomsky (1956)

A CFG consists of a set of rules and a lexicon of words and symbols

start symbol S 2> NP VP

NP > DT N non-terminal symbols
VP - V NP

DT - the

V = robbed terminal symbols

N - burglar | apartment

@Jixing Li

Top-down parsing

CFG: Input: Stack
S > NPVP ‘the dog laughs” S

NP > DT N 'the dog laughs” NP VP
DT - the 'the dog laughs” DT N VP

N = dog ‘the dog laughs’ #te N VP

VP >V '‘dog laughs’ N VP

V = laughs deg laughs’ dog VP
‘laughs’ VP
'laughs’ V

I tatghs’ +aughs
]]

Operation

expand S > NP VP
expand NP -> DT N
expand DT - the
scan the
expand N - dog
scan dog
expand VP >V
expand V - laughs
scan laughs

@Jixing Li

Bottom-up parsing

CFG:

S > NPVP
NP = DT N
DT - the
N = dog
VP >V

V = laughs

Input:

Stack

'the dog laughs’ the

'‘dog laughs’
'‘dog laughs’
‘laughs’
‘laughs’
‘laughs’

DT
DT dog
DT N

D

P laughs
P V/
P VP

n 222 2

Operation

shift
reduce
shift
reduce
reduce
shift
reduce
reduce
reduce

the
DT - the
dog

N = dog
NP = DT N
laughs

V = laughs
VP 2>V

S > NPVP

@Jixing Li

Word meaning: Attributes

Binder et al. (2016): 65 dimensions, scale: 0-6

mmmmmm

bicycle
farm
farmer
green
red
rocket

trust

3.5484
5.3
5.7097
4.1786
4.2963
5
5.5
0.3793

0.3548
1.1667
1.1935
0.5
1.7778
3.2857
2.9333
0.1379

3.5806
0.6333
0.5161
0.3214
1
1.25
0.7333
0.0345

3.9355
1
1.7419
0.4286
5.9259

1.8667
0.3103

1.9355
2.1667
1.8065
0.6071
1.5926
1.4643
1.9
0.2069

0.0968
1.7
5.0645
1.4286
0.1852
0.1071
5.6
0.3103

5.871
1.2667
0.129
0.6786
0.1111
0.0357
0.2333
0.069

@Jixing Li

Word meaning: Co-occurrence

Wittgenstein (1953): The meaning of a word is its use
in the language

Harris (1954): If A and B have almost identical
environments we say that they are synonyms.

Firth (1957): A word is characterized by the company it
keeps.

@Jixing Li

Example: ongchoi

Suppose you see these sentences:
ongchoi is delicious sautéed with garlic.
ongchoi is superb over rice
ongchoi leaves with salty sauces

And you've also seen these:
...spinach sauteed with garlic over rice
chard stems and leaves are delicious
collard greens and other salty leafy greens

Conclusion:
ongchoi is a leafy green like spinach, chard, or collard greens

We could conclude this based on words like "leaves" and
"delicious" and "sauteed"

@Jixing Li

Word2Vec: skip-gram training

Assume a +/- 2 word window, given training sentence:

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

Assigns each pair a probability:
P(+|w, ¢): cis in the context of word w
P(—|w, c) =1 - P(+|w, ©)

@Jixing Li

Example

...lemon, a [tablespoon of apricot jam, a] pinch...

cl c2 c3 c4

positive examples + negative examples -
t C t C t C For each positive

, . . example we'll
apricot tablespoon apricot aardvark apricot seven take k negative
apricot of apricot my apricot forever examples

: : R g (here, k=2)
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if

@Jixing Li

Learning the classifier

How to learn?

_ (aardvark ©00
Gradient descent! move apricot and jam closer,
apricot [@eew|” — = < - increasing Cpos *~ W
W - . \
We'll adjust the word weights S «apricot jam...”
to k zebra [ee9 " /’~
 make the p05|t|ve pairs 0 (aardvark axn ,"‘ . move apricot and matrix apart
more Ilkely jam |@esic ,/ | Z decreasing C .o * W
. . pOS ' '
« and the negative pairs less VL
||ke|y, C 4 , |matrix ©8® Ceq [« -
. .. 000 . . - _move apricot and Tolstoy apart
- over the entire training set. K Tolstoy 229 “resr] decreasing c,,_, * w
zebra [eee

@Jixing Li

Computing word similarity: Cosine
N

L Zviwi = ViW] +Vvows + ... +FVvywa

oo V-w i=1
cosine(V,w) = —— =
vl [wi N

\ Zvlz\ sz Normalized by the

i1 1 i length of the vector

The dot product tends to be high when the two vectors have large
values in the same dimensions
- a useful similarity metric between vectors

\ / -1: vectors point in opposite directions: dissimilar
N +1: vectors point in same directions: similar

v 0: vectors are orthogonal

@Jixing Li

Cosine similarity: Example

oS v w w 1177le cherry 6.76 | 2.42 1.22
|v||W| IWI digital 1.65 | 6.85 6.83
Zl 1 l Z information 1.44 6.62 6.48

cos(cherry,information)

6.76 * 1.44 + 2.42 * 6.62 + 1.22 * 6.48 semantically-

= 0.49

" V6.762 2422 + 1.222V1.442 + 6.622 + 6.482 related words
have higher
N , cosine similarity
cos(digital, information)
1.65 % 1.44 + 6.85 * 6.62 + 6.83 * 6.48 _ 0.95

 V1.652 + 6.852 + 6.832V1.44Z + 6.622 + 6.482

@Jixing Li

Evaluating word embeddings

king -

Male-Female

walked
(@)
. 7
(),) swam
walking
O —
swimming
Verb tense

Italy -~—-__-—-~_____§§_-Madrid

Germany ————_________________— WO
Berlin
Turkey “‘~—-_._____~_____
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

@Jixing Li

Against human judgement

SimLex-999: Human rating on the similarity between 999 pairs of
words (scale: 0-10)

wordl __word2 ____similarity e lEICRSE

9.8 correlation between
- the cosines of the

vanish disappear

behave obey 7.3 word embeddings

: : : and the simlex-999
belief impression 5.95 values
muscle bone 3.65

modest flexible 0.98
hole agreement 0.3

@Jixing Li

Against human brain data?
Huth et al (2016)

a Voxel-wise model estimation

Naturally spoken stories were played for 7 subjects

’ Semantic features

‘Above’ AR
‘Dance’ WAV M
¢ M an ! M"JV“!“W»VhwlW*‘W‘i‘y",’M".M ‘.\A

‘Seven’ it
125 min

Regression
weights

3 -0.4 0.7
1.5 -2.1 -3.2
0.1

0.1 -2.7
-0.8 -3.7

Co-occurrence was found between each word
in the stories and 985 common words

BOLD
responses

|
DN LR ! A\ l\r"\w"y""/'ﬁ-"rM “\M" ‘1]'

I

I

I

]

125 min

Voxel-wise model validation

A new story was then played for each subject

Y

‘Above’
‘Dance’
‘Man’

‘Seven’

Semantic
features

i
—
WVN#JWW: x
A

—
11 min

.8 =04 0.7

-1.5 -2.1 -3.2
0.1
1.7

0.1 2.7
-0.8 -3.7

Estimated regression weights were
used to predict responses

Model

predictions

= F.Wl“\'f\Wf“{
NN
o

—
11 min

Y

New BOLD

responses

< L T

:C lati > WA
orrelation

< TR el

Prediction 1' 1 min
performance

@Jixing Li

tactile

Anterior

ahsiract

violent

tactire

awstract
PCA1

violent

tactile

abstract

,:‘\,u;x.
tacyiglent
_
abstract

© Superior

l— Anterior

Against human brain data?

Activation across voxels
tree HED
dog . }. i] . Low value

horse Il RN ...

High value

Model-based RDMs

horse <
o
- - - . . - Q
Pairwise dissimilarity dog o
(1 - correlation) >

tree

v - F P &
. . = - voﬁ bo ‘éQ/
Neural RDM el
Py L4

. horse
horse §
o
dog ----------- dog fl
Correlation tree @

tree oy e
M L 2
e H L s 7@
& i NOESE
AN ‘ ~.

horse -
8
dog o
O

tree

O

@Jixing Li

Spearman's rho

Against human brain data?

0.20

o
(-
o

0.10

0.05

0.00

RSA

ant
bicycle
farm
farmer
green
red
rocket

trust

3.5484
5.3
5.7097
4.1786
4.2963
5
5.5
0.3793

0.3548
1.1667
1.1935
0.5
1.7778
3.2857
2.9333
0.1379

3.5806
0.6333
0.5161
0.3214
1
1.25
0.7333
0.0345

3.9355
1
1.7419
0.4286
5.9259

1.8667
0.3103

1.9355
2.1667
1.8065
0.6071
1.5926
1.4643
1.9
0.2069

0.0968
1.7
5.0645
1.4286
0.1852
0.1071
5.6
0.3103

5.871
1.2667
0.129
0.6786
0.1111
0.0357
0.2333
0.069

@Jixing Li

To do

Do HW10

Textbooks:

Jurafsky and Martin, Speech and Language Processing
https://web.stanford.edu/~jurafsky/slp3/

Bird et al. Natural Language Processing with Python
https://www.nltk.org/book/

Next lecture: File Ch10

@Jixing Li

https://web.stanford.edu/~jurafsky/slp3/
https://www.nltk.org/book/

